数学七年级下册第十一章 因式分解综合与测试随堂练习题
展开这是一份数学七年级下册第十一章 因式分解综合与测试随堂练习题,共18页。
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列从左边到右边的变形,属于因式分解的是( )
A.B.
C.D.
2、下列各式能用完全平方公式进行分解因式的是( )
A.x2+1B.x2+2x﹣1C.x2+3x+9D.
3、下列多项式中能用平方差公式分解因式的是( )
A.B.C.D.
4、下列各式从左到右的变形中,属于因式分解的是( )
A.B.
C.D.
5、下列从左边到右边的变形,属于因式分解的是( )
A.x2﹣x﹣6=(x+2)(x﹣3)B.x2﹣2x+1=x(x﹣2)+1
C.x2+y2=(x+y)2D.(x+1)(x﹣1)=x2﹣1
6、把多项式因式分解得,则常数,的值分别为( )
A.,B.,
C.,D.,
7、下列从左到右的变形,是分解因式的是( )
A.xy2(x﹣1)=x2y2﹣xy2B.2a2+4a=2a(a+2)
C.(a+3)(a﹣3)=a2﹣9D.x2+x﹣5=(x﹣2)(x+3)+1
8、下列从左到右的变形,是因式分解的是( )
A.(x+4)(x﹣4)=x2﹣16B.x2﹣x﹣6=(x+3)(x﹣2)
C.x2+1=x(x+)D.a2b+ab2=ab(a+b)
9、下列等式中,从左往右的变形为因式分解的是( )
A.a2﹣a﹣1=a(a﹣1﹣)
B.(a﹣b)(a+b)=a2﹣b2
C.m2﹣m﹣1=m(m﹣1)﹣1
D.m(a﹣b)+n(b﹣a)=(m﹣n)(a﹣b)
10、下列因式分解正确的是( )
A.x2-4x+4=x(x-4)+4B.9-6(m-n)+(n-m)2=(3-m+n)2
C.4x2+2x+1=(2x+1)2D.x4-y4=(x2+y2)(x2-y2)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、当x=___时,x2﹣2x+1取得最小值.
2、因式分解:2a2-4a-6=________.
3、因式分解:=___________.
4、若,则_________.
5、分解因式:______.
三、解答题(5小题,每小题10分,共计50分)
1、把下列各式分解因式:
(1)x2+3x﹣4;
(2)a3b﹣ab;
(3)3ax2﹣6axy+3ay2.
2、阅读材料:
利用公式法,可以将一些形如的多项式变形为的形式,我们把这样的变形方法叫做多项式的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解.例如
根据以上材料,解答下列问题.
(1)分解因式:;
(2)求多项式的最小值;
(3)已知a,b,c是的三边长,且满足,求的周长.
3、(Ⅰ)先化简,再求值:,其中,;
(Ⅱ)分解因式:① ;② .
4、分解因式:2x3+12x2y+18xy2.
5、(1)计算:;
(2)分解因式:.
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据因式分解的定义(把一个多项式化为几个整式的积的形式),平方差公式、完全平方公式,提公因式法依次进行因式分解判断即可得.
【详解】
解:A、选项为整式的乘法;
B、,选项错误;
C、,选项错误;
D、选项正确;
故选:D.
【点睛】
题目主要考查因式分解的定义及方法,熟练掌握利用公式因式分解是解题关键.
2、D
【解析】
【分析】
根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项分析判断后利用排除法求解.
【详解】
解:A、x2+1不符合完全平方公式法分解因式的式子特点,故本选项不符合题意;
B、x2+2x﹣1不符合完全平方公式法分解因式的式子特点,故本选项不符合题意;
C、x2+3x+9不符合完全平方公式法分解因式的式子特点,故本选项不符合题意;
D、,故选项正确;
故选:D
【点睛】
本题考查了完全平方式的运用分解因式,关键是熟练掌握完全平方式的特点.
3、A
【解析】
【分析】
利用平方差公式逐项进行判断,即可求解.
【详解】
解:A、,能用平方差公式分解因式,故本选项符合题意;
B、 ,不能用平方差公式分解因式,故本选项不符合题意 ;
C、 ,不能用平方差公式分解因式,故本选项不符合题意 ;
D、 ,不能用平方差公式分解因式,故本选项不符合题意 ;
故选:A
【点睛】
本题主要考查了用平方差公式因式分解,熟练掌握平方差公式 是解题的关键.
4、B
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:、是单项式的乘法,不是因式分解,故本选项不符合题意;
、是因式分解,利用了完全平方差公式进行了因式分解,故本选项符合题意;
、是整式的乘法,不是因式分解,故本选项不符合题意;
、因式分解错误,故本选项不符合题意;
故选:B.
【点睛】
本题考查了因式分解的定义,解题的关键是能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
5、A
【解析】
【分析】
把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,根据概念逐一判断即可.
【详解】
解:x2﹣x﹣6=(x+2)(x﹣3)属于因式分解,故A符合题意;
x2﹣2x+1=x(x﹣2)+1,右边没有化为整式的积的形式,不是因式分解,故B不符合题意;
x2+y2=(x+y)2的左右两边不相等,不能分解因式,不是因式分解,故C不符合题意;
(x+1)(x﹣1)=x2﹣1是整式的乘法运算,不是因式分解,故D不符合题意;
故选A
【点睛】
本题考查的是因式分解的概念,掌握“利用因式分解的概念判断代数变形是否是因式分解”是解题的关键.
6、A
【解析】
【分析】
根据因式分解是恒等式,展开比较系数即可.
【详解】
∵=,
∴=,
∴n-2=5,m=-2n,
∴n=7,m=-14,
故选A.
【点睛】
本题考查了因式分解,正确理解因式分解的恒等性是解题的关键.
7、B
【解析】
【分析】
根据因式分解的意义对各选项进行逐一分析即可.
【详解】
解:、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;
、符合因式分解的意义,是因式分解,故本选项正确,符合题意;
、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;
、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意.
故选:B.
【点睛】
本题考查的是因式分解的意义,解题的关键是把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.
8、D
【解析】
【分析】
分解因式就是把一个多项式化为几个整式的积的形式,因此,要确定从左到右的变形中是否为因式分解或者分解因式是否正确,逐项进行判断即可.
【详解】
A、结果不是积的形式,因而不是因式分解;
B、,因式分解错误,故错误;
C、 不是整式,因而不是因式分解;
D、满足因式分解的定义且因式分解正确;
故选:D.
【点睛】
题目主要考查的是因式分解的概念及方法,熟练掌握理解因式分解的定义及方法是解题关键.
9、D
【解析】
【分析】
把一个多项式化为几个整式的乘积的形式叫因式分解,根据定义对各选项进行一一分析判断即可.
【详解】
A. a2﹣a﹣1=a(a﹣1﹣)∵从左往右的变形是乘积形式,但(a﹣1﹣)不是整式,故选项A不是因式分解;
B. (a﹣b)(a+b)=a2﹣b2,从左往右的变形是多项式的乘法,故选项B不是因式分解;
C. m2﹣m﹣1=m(m﹣1)﹣1,从左往右的变形不是整体的积的形式,故选项C不是因式分解;
D.根据因式分解的定义可知 m(a﹣b)+n(b﹣a)=(m﹣n)(a﹣b)是因式分解,故选项D从左往右的变形是因式分解.
故选D.
【点睛】
本题考查因式分解,掌握因式分解的特征从左往右的变形后各因式乘积,各因式必须为整式,各因式之间不有加减号是解题关键.
10、B
【解析】
【分析】
利用公式法进行因式分解判断即可.
【详解】
解:A、,故A错误,
B、9-6(m-n)+(n-m)2=(3-m+n)2,故B正确,
C、4x2+2x+1,无法因式分解,故C错误,
D、,因式分解不彻底,故D错误,
故选:B.
【点睛】
本题主要是考查了利用公式法进行因式分解,一定要熟练掌握完全平方公式和平方差公式的形式,另外因式分解一定要彻底.
二、填空题
1、1
【解析】
【分析】
先根据完全平方公式配方,再根据偶次方的非负性即可求解.
【详解】
解:∵,
∴当x=1时,x2﹣2x+1取得最小值.
故答案为:1.
【点睛】
本题考查了完全平方公式,解题的关键是掌握完全平方公式.
2、2(a-3)(a+1)## 2(a+1)(a-3)
【解析】
【分析】
提取公因式2,再用十字相乘法分解因式即可.
【详解】
解:2a2-4a-6=2(a2-2a-3)=2(a-3)(a+1)
故答案为:2(a-3)(a+1)
【点睛】
本题考查了本题考查了提公因式法与十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说如果可以先提取公因式的要先提取公因式,再考虑运用公式法或十字相乘法分解因式,分解因式要彻底是解题关键.
3、
【解析】
【分析】
先提公因式,再利用完全平方公式分解即可.
【详解】
解:
=
=
故答案为:
【点睛】
本题考查了提公因式法和公式法分解因式,解题的关键是掌握完全平方公式.
4、2022
【解析】
【分析】
根据,得,然后局部运用因式分解的方法达到降次的目的,整体代入求解即可.
【详解】
∵
∴
∴
故填“2022”.
【点睛】
本题主要考查了因式分解,善于运用因式分解的方法达到降次的目的,渗透整体代入的思想是解决本题的关键.
5、
【解析】
【分析】
首先提取公因式,再根据平方差公式计算,即可得到答案.
【详解】
故答案为:.
【点睛】
本题考查了因式分解的知识;解题的关键是熟练掌握平方差公式的性质,从而完成求解.
三、解答题
1、 (1)(x+4)(x﹣1)
(2)ab(a+1)(a﹣1)
(3)3a(x﹣y)2
【解析】
【分析】
(1)利用十字相乘法进行分解即可;
(2)先提公因式,然后再利用平方差公式继续分解即可;
(3)先提公因式,然后再利用完全平方公式继续分解即可;
(1)
解:x2+3x﹣4=(x+4)(x﹣1);
(2)
解:a3b﹣ab
=ab(a2﹣1)
=ab(a+1)(a﹣1);
(3)
解:3ax2﹣6axy+3ay2
=3a(x2﹣2xy+y2)
=3a(x﹣y)2;
【点睛】
本题考查了因式分解﹣十字相乘法,提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.
2、 (1)
(2)
(3)12.
【解析】
【分析】
(1)先配完全平方,然后利用平方差公式即可.
(2)先配方,然后根据求最值即可.
(3)对移项、配方,根据平方大于等于0,确定每一项均为0,求解边长,进而得出周长.
(1)
解:
.
(2)
解:
∵
∴
∴多项式的最小值为.
(3)
解:∵
∴
即
∴
∴,,
∴,,
∴的周长.
【点睛】
本题考查了完全平方公式与平方差公式分解因式,代数式的最值,平方等知识.解题的关键在于正确的配方.
3、(Ⅰ),;(Ⅱ)①;②
【解析】
【分析】
(Ⅰ)括号里的使用完全平方公式与平方差公式得到单项式加减的形式,合并同类项;进行因式分解,利用除法法则进行化简,最后将的值代入,进而得出结果.
(Ⅱ)①先提公因式,再利用平方差公式进行分解.②先提公因式,再利用完全平方公式进行分解.
【详解】
解:(Ⅰ)原式
当、时
原式.
(Ⅱ)①
.
②
.
【点睛】
本题考察了平方差公式、完全平方公式、因式分解、多项式与单项式的除法等知识点.解题的关键与难点在于熟练掌握乘法公式,以及运算法则.
4、2x(x+3y)2
【解析】
【分析】
先提公因式,进而根据完全平方公式因式分解即可.
【详解】
解:2x3+12x2y+18xy2
=2x(x2+6xy+9y2)
=2x(x+3y)2.
【点睛】
本题考查了因式分解,掌握因式分解的方法是解题的关键.
5、(1);(2)
【解析】
【分析】
(1)利用乘方的意义,零指数幂、负整数指数幂法则计算即可求出值;
(2)提取公因式,再利用完全平方公式分解即可.
【详解】
(1)原式
;
(2)原式
.
【点睛】
本题考查了提公因式法与公式法的综合运用,以及实数的运算,熟练掌握因式分解的方法是解本题的关键.
相关试卷
这是一份2021学年第十一章 因式分解综合与测试课时练习,共16页。试卷主要包含了下列各式中,正确的因式分解是,下列因式分解正确的是等内容,欢迎下载使用。
这是一份数学七年级下册第十一章 因式分解综合与测试测试题,共16页。试卷主要包含了把代数式分解因式,正确的结果是,如果x2+kx﹣10=等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试随堂练习题,共16页。试卷主要包含了下列因式分解正确的是,计算的值是,已知实数x,y满足等内容,欢迎下载使用。