2020-2021学年第十一章 因式分解综合与测试达标测试
展开冀教版七年级数学下册第十一章 因式分解定向训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若a2=b+2,b2=a+2,(a≠b)则a2﹣b2﹣2b+2的值为( )
A.﹣1 B.0 C.1 D.3
2、下列各式从左到右进行因式分解正确的是( )
A.4a2﹣4a+1=4a(a﹣1)+1 B.x2﹣2x+1=(x﹣1)2
C.x2+y2=(x+y)2 D.x2﹣4y=(x+4y)(x﹣4y)
3、不论x,y取何实数,代数式x2-4x+y2-6y+13总是( )
A.非负数 B.正数 C.负数 D.非正数
4、下列各式从左到右的变形中,是因式分解且完全正确的是( )
A.(x+2)(x﹣2)=x2﹣4 B.x2﹣2x﹣3=x(x﹣2)﹣3
C.x2﹣4x+4=(x﹣2)2 D.x3﹣x=x(x2﹣1)
5、下列各式中能用平方差公式计算的是( )
A.(x+y)(y﹣x) B.(x+y)(y+x)
C.(x+y)(﹣y﹣x) D.(x﹣y)(y﹣x)
6、下列从左到右的变形,是因式分解的是( )
A.(x+4)(x﹣4)=x2﹣16 B.x2﹣x﹣6=(x+3)(x﹣2)
C.x2+1=x(x+) D.a2b+ab2=ab(a+b)
7、把多项式分解因式,其结果是( )
A. B.
C. D.
8、把分解因式的结果是( ).
A. B.
C. D.
9、分解因式2a2(x-y)+2b2(y-x)的结果是( )
A.(2a2+2b2) (x-y) B.(2a2-2b2) (x-y)
C.2(a2-b2) (x-y) D.2(a-b)(a+b)(x-y)
10、下列各式中,从左到右的变形是因式分解的是( )
A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2
C.x2﹣4xy+4y2=(x﹣2y)2 D.x2+1=x(x+)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、分解因式:4a3b2﹣6a2b2=_____.
2、若a-b=2,a2-b2=6,则a2+b2=______.
3、若,,则的值为______.
4、因式分解:______.
5、分解因式:=__________.
三、解答题(5小题,每小题10分,共计50分)
1、分解因式:
(1)
(2)
2、分解因式
(1)(x2﹣3)2﹣2(x2﹣3)+1;
(2)m2(a﹣2)+(2﹣a).
3、下面是某同学对多项式进行因式分解的过程.
解:设
原式(第一步)
第二步)
(第三步)
(第四步)
(1)该同学第二步到第三步运用了因式分解的______.
A.提取公因式 B.两数和乘以两数差公式
C.两数和的完全平方公式 D. 两数差的完全平方公式
(2)该同学因式分解的结果是否彻底?_____(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果______.
(3)请你模仿以上方法尝试对多项式进行因式分解.
4、因式分解:
(1)
(2)
5、因式分解:
(1)3a2﹣6ab+3b2
(2) (x+1)(x+2)(x+3)(x+4)+1
-参考答案-
一、单选题
1、D
【解析】
【分析】
由a2=b+2,b2=a+2,且a≠b,可得a+b=−1,将a2-b2-2b+2变形为(a+b)(a-b)−2b+2,再代入计算即可求解.
【详解】
解:∵a2=b+2,b2=a+2,且a≠b,
∴a2−b2=b−a,
即(a+b)(a-b)=b-a,
∴a+b=−1,
∴a2-b2-2b+2
=(a+b)(a-b)−2b+2
=b−a-2b+2
=-(a+b)+2
=1+2
=3.
故选:D.
【点睛】
本题考查了代数式求值,解题的关键是求得a+b=−1,将a2-b2-2b+2变形为(a+b)(a-b)−2b+2是解题的关键.
2、B
【解析】
【分析】
因式分解是将一个多项式写成几个整式乘积的形式,并且分解要彻底,根据完全平方公式和因式分解的定义逐项分析判断即可
【详解】
解:A. 4a2﹣4a+1=,故该选项不符合题意;
B. x2﹣2x+1=(x﹣1)2,故该选项符合题意;
C. x2+y2(x+y)2,故该选项不符合题意;
D. x2﹣4y(x+4y)(x﹣4y),故该选项不符合题意;
故选B
【点睛】
本题考查了因式分解的定义,完全平方公式因式分解,理解因式分解的定义是解题的关键.
3、A
【解析】
【分析】
先把原式化为,结合完全平方公式可得原式可化为从而可得答案.
【详解】
解:x2-4x+y2-6y+13
故选A
【点睛】
本题考查的是代数式的值,非负数的性质,利用完全平方公式分解因式,掌握“”是解本题的关键.
4、C
【解析】
【分析】
根据因式分解的定义逐项分析即可.
【详解】
A.(x+2)(x﹣2)=x2﹣4是乘法运算,故不符合题意;
B.x2﹣2x﹣3=x(x﹣2)﹣3的右边不是积的形式,故不符合题意;
C.x2﹣4x+4=(x﹣2)2是因式分解,符合题意;
D.x3﹣x=x(x2﹣1)=x(x+1)(x-1),原式分解不彻底,故不符合题意;
故选C.
【点睛】
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
5、A
【解析】
【分析】
能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反,对各选项分析判断后利用排除法.
【详解】
解:A、(x+y)(y﹣x)=不符合平方差公式的特点,故本选项符合题意;
B、(x+y)(y+x),不符合平方差公式的特点,不能用平方差公式计算,故本选项不合题意;
C、(x+y)(﹣y﹣x)不符合平方差公式的特点,不能用平方差公式计算,故本选项不符合题意;
D、(x﹣y)(y﹣x)不符合平方差公式的特点,不能用平方差公式计算,故本选项不符合题意;
故选A.
【点睛】
本题考查的是应用平方差公式进行计算的能力,掌握平方差公式的结构特征是正确解题的关键.
6、D
【解析】
【分析】
分解因式就是把一个多项式化为几个整式的积的形式,因此,要确定从左到右的变形中是否为因式分解或者分解因式是否正确,逐项进行判断即可.
【详解】
A、结果不是积的形式,因而不是因式分解;
B、,因式分解错误,故错误;
C、 不是整式,因而不是因式分解;
D、满足因式分解的定义且因式分解正确;
故选:D.
【点睛】
题目主要考查的是因式分解的概念及方法,熟练掌握理解因式分解的定义及方法是解题关键.
7、B
【解析】
【分析】
因为−6×9=−54,−6+9=3,所以利用十字相乘法分解因式即可.
【详解】
解:x2+3x−54=(x−6)(x+9);
故选:B.
【点睛】
本题考查十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.
8、B
【解析】
【分析】
先用平方差公式分解因式,在提取公因式即可得出结果.
【详解】
解:a2+2a-b2-2b,
=(a2-b2)+(2a-2b),
=(a+b)(a-b)+2(a-b),
=(a-b)(a+b+2),
故选:B.
【点睛】
此题主要考查了提取公因式法和公式法分解因式,正确找出公因式是解题关键.
9、D
【解析】
【分析】
根据提公因式法和平方差公式分解因式.
【详解】
解:2a2(x-y)+2b2(y-x)
=2a2(x-y)-2b2(x-y)
=(2a2-2b2)(x-y)
=2(a2-b2)(x-y)
=2(a-b)(a+b)(x-y).
故选:D.
【点睛】
此题考查了分解因式,正确掌握因式分解的方法:提公因式法和公式法(平方差公式、完全平方公式及十字相乘法)是解题的关键.
10、C
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:A.从左到右的变形不属于因式分解,故本选项不符合题意;
B.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;
C.从左到右的变形属于因式分解,故本选项符合题意;
D.等式的右边是分式与整式的积,即从左到右的变形不属于因式分解,故本选项不符合题意;
故选:C.
【点睛】
此题主要考查因式分解的识别,解题的关键是熟知因式分解的意义,把一个多项式转化成几个整式积的形式.
二、填空题
1、2a2b2(2a﹣3)
【解析】
【分析】
直接找出公因式进而提取分解因式即可.
【详解】
4a3b2﹣6a2b2=2a2b2(2a﹣3).
故答案为:2a2b2(2a﹣3).
【点睛】
此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.
2、##6.5
【解析】
【分析】
根据平方差公式求出a+b=3,解方程组,求出解代入计算即可.
【详解】
解:∵a-b=2,a2-b2=6,a2-b2=(a+b)(a-b)
∴a+b=3,
解方程组,得,
∴a2+b2=,
故答案为:.
【点睛】
此题考查了平方差公式的应用,解二元一次方程组,已知字母的值求代数式的值,正确掌握平方差公式是解题的关键.
3、±1
【解析】
【分析】
先把提取公因式,根据,求出的值,再根据,求出的值,即可得出的值.
【详解】
解:,
,
,
,
,
;
故答案为:.
【点睛】
此题考查了因式分解的应用,解决此类问题要整体观察,根据具体情况综合应用相关公式进行整体代入是解决这类问题的基本思想.
4、
【解析】
【分析】
直接提取公因式整理即可.
【详解】
解:,
故答案是:.
【点睛】
本题考查了提取公因式因式分解,解题的关键是找准公因式.
5、##()(2- x)(2+x)
【解析】
【分析】
观察式子可发现此题为两个数的平方差,所以利用平方差公式分解即可.
【详解】
解:
故答案为:
【点睛】
本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.
三、解答题
1、(1);(2)
【解析】
【分析】
(1)先提公因式-3,再利用完全平方公式分解;
(2)先提公因式(x-y),再利用平方差公式分解因式.
【详解】
解:(1)
=
=
(2)
=
=
=.
【点睛】
此题考查了因式分解,正确掌握因式分解的方法:提公因式法和公式法(平方差公式、完全平方公式)及解决问题是解题的关键.
2、 (1)(x+2)2(x﹣2)2
(2)(a﹣2)(m﹣1)(m+1)
【解析】
【分析】
(1)把(a2﹣3)看作一个整体用完全平方公式因式分解,再用平方差公式因式分解;
(2)先把m2(a﹣2)+(2﹣a)化为m2(a﹣2)﹣(a﹣2)的形式,然后提取公因式,再用平方差公式因式分解.
(1)
解:(1)(x2﹣3)2﹣2(x2﹣3)+1
=(x2﹣3﹣1)2
=(x+2)2(x﹣2)2;
(2)
解:m2(a﹣2)+(2﹣a)
=m2(a﹣2)﹣(a﹣2)
=(a﹣2)(m2﹣1)
=(a﹣2)(m﹣1)(m+1).
【点睛】
本题考查了因式分解,解题根据是熟练运用公式法和提取公因式法进行因式分解.
3、 (1)C
(2)不彻底 ,
(3)
【解析】
【分析】
(1)先根据多项式乘以多项式计算,再用完全平方公式因式分解计算即可
(2)利用完全平方公式因式分解即可
(3)模仿给出的步骤,进行因式分解即可
(1)
∵,
∴运用了两数和的完全平方公式.
故选C.
(2)
∵,
∴因式分解不彻底.
故答案为:不彻底,.
(3)
,
解:设,
则原式
.
【点睛】
本题考查因式分解、完全平方公式、多项式乘以多项式以及幂的乘方.理解题意,利用换元法是解题的关键.
4、 (1)
(2)-4(6a+b)( a+6b)
【解析】
【分析】
(1)用因式分解法分解即可;
(2)用平方差公式分解即可;
(1)
解:
=
=
=;
(2)
解:
=
=
=(5a-5b+7a+7b)(5a-5b-7a-7b)
=(12a+2b)( -2a-12b)
=-4(6a+b)( a+6b) .
【点睛】
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
5、(1);(2).
【解析】
【分析】
(1)先提取公因式,然后利用公式法进行因式分解即可;
(2)先利用乘法交换律进行变换,然后根据多项式乘以多项式分两组计算,将看作一个整体,继续进行多项式乘法运算,最后运用公式法进行因式分解即可.
【详解】
解:(1),
,
;
(2),
,
,
,
.
【点睛】
题目主要考查因式分解的方法提公因式法和公式法的综合运用,熟练掌握因式分解的方法是解题关键.
冀教版七年级下册第十一章 因式分解综合与测试课后练习题: 这是一份冀教版七年级下册第十一章 因式分解综合与测试课后练习题,共19页。试卷主要包含了分解因式2a2,下列分解因式正确的是,下列因式分解正确的是等内容,欢迎下载使用。
初中数学冀教版七年级下册第十一章 因式分解综合与测试课时作业: 这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试课时作业,共17页。试卷主要包含了把分解因式的结果是.,下列各式从左至右是因式分解的是,已知x2+x﹣6=,对于有理数a,b,c,有等内容,欢迎下载使用。
初中数学冀教版七年级下册第十一章 因式分解综合与测试同步达标检测题: 这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试同步达标检测题,共16页。试卷主要包含了下列运算错误的是,下列分解因式正确的是等内容,欢迎下载使用。