数学七年级下册第十一章 因式分解综合与测试同步练习题
展开
这是一份数学七年级下册第十一章 因式分解综合与测试同步练习题,共18页。试卷主要包含了若a2=b+2,b2=a+2,,下列因式分解正确的是,已知x,y满足,则的值为等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列因式分解正确的是( )A. B.C. D.2、下列由左到右的变形,是因式分解的是( )A. B.C. D.3、下列等式中,从左到右的变形是因式分解的是( )A. B.C. D.4、若a2=b+2,b2=a+2,(a≠b)则a2﹣b2﹣2b+2的值为( )A.﹣1 B.0 C.1 D.35、下列各式中从左到右的变形,是因式分解的是( )A. B.C. D.6、下列等式从左到右的变形,属于因式分解的是( )A. B.C. D.7、判断下列不能运用平方差公式因式分解的是( )A.﹣m2+4 B.﹣x2–y2C.x2y2﹣1 D.(m﹣a)2﹣(m+a)28、下列因式分解正确的是( )A. B.C. D.9、已知x,y满足,则的值为( )A.—5 B.4 C.5 D.2510、把多项式a2﹣9a分解因式,结果正确的是( )A.a(a+3)(a﹣3) B.a(a﹣9)C.(a﹣3)2 D.(a+3)(a﹣3)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、单项式4m2n2与12m3n2的公因式是________.2、分解因式:________.3、分解因式:________.4、分解因式:______.5、分解因式:___.三、解答题(5小题,每小题10分,共计50分)1、阅读材料:利用公式法,可以将一些形如的多项式变形为的形式,我们把这样的变形方法叫做多项式的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解.例如根据以上材料,解答下列问题.(1)分解因式:;(2)求多项式的最小值;(3)已知a,b,c是的三边长,且满足,求的周长.2、分解因式(1)(x2﹣3)2﹣2(x2﹣3)+1;(2)m2(a﹣2)+(2﹣a).3、分解因式:.4、计算:(1)(xny3n)2+(x2y6)n;(2)(4a2b+6a2b2﹣ab2)÷2ab;(3)a2b﹣16b;(分解因式)(4)5x3﹣20x2y+20xy2(分解因式).5、下面是某同学对多项式进行因式分解的过程.解:设原式(第一步)第二步)(第三步)(第四步)(1)该同学第二步到第三步运用了因式分解的______.A.提取公因式 B.两数和乘以两数差公式C.两数和的完全平方公式 D. 两数差的完全平方公式(2)该同学因式分解的结果是否彻底?_____(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果______.(3)请你模仿以上方法尝试对多项式进行因式分解. -参考答案-一、单选题1、A【解析】【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做因式分解,进行判断即可.【详解】解:A、,选项说法正确,符合题意;B、,选项说法错误,不符合题意;C、是整式乘法运算,不是因式分解,选项说法错误,不符合题意;D、,选项说法错误,不符合题意;故选A.【点睛】本题考查了因式分解,解题的关键是掌握因式分解的定义以及分解的正确性.2、A【解析】【分析】根据因式分解的定义,对各选项作出判断,即可得出正确答案.【详解】解:A、,是因式分解,故此选项符合题意;B、,原式分解错误,故本选项不符合题意;C、右边不是整式的积的形式,故本选项不符合题意;D、原式是整式的乘法运算,不是因式分解,故本选项不符合题意;故选:A.【点睛】本题考查了分解因式的定义.解题的关键是掌握分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.3、D【解析】【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解)、平方差公式()逐项判断即可得.【详解】解:A、等式右边不是整式积的形式,不是因式分解,则此项不符题意;B、是整式的乘法运算,不是因式分解,则此项不符题意;C、等式右边等于,与等式左边不相等,不是因式分解,则此项不符题意;D、等式右边等于,即等式的两边相等,且等式右边是整式积的形式,是因式分解,则此项符合题意;故选:D.【点睛】本题考查了因式分解的定义、整式的乘法运算,熟记因式分解的定义是解题关键.4、D【解析】【分析】由a2=b+2,b2=a+2,且a≠b,可得a+b=−1,将a2-b2-2b+2变形为(a+b)(a-b)−2b+2,再代入计算即可求解.【详解】解:∵a2=b+2,b2=a+2,且a≠b,∴a2−b2=b−a,即(a+b)(a-b)=b-a,∴a+b=−1,∴a2-b2-2b+2=(a+b)(a-b)−2b+2=b−a-2b+2=-(a+b)+2=1+2=3.故选:D.【点睛】本题考查了代数式求值,解题的关键是求得a+b=−1,将a2-b2-2b+2变形为(a+b)(a-b)−2b+2是解题的关键.5、B【解析】【分析】因式分解的结果是几个整式的积的形式.【详解】解:A.从左到右的变形是整式乘法,不是因式分解,故本选项不符合题意;B.从左到右的变形是因式分解,故本选项符合题意;C. ,故本选项不符合题意;D.,故本选项不符合题意;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.6、B【解析】【分析】根据因式分解的定义直接判断即可.【详解】解:A.等式从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意; B.等式从左到右的变形属于因式分解,故本选项符合题意;C.没把一个多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意;D.属于整式乘法,不属于因式分解,故本选项不符合题意;故答案为:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.7、B【解析】【分析】根据平方差公式:进行逐一求解判断即可.【详解】解:A、,能用平方差公式分解因式,不符合题意;B、,不能用平方差公式分解因式,符合题意;C、,能用平方差公式分解因式,不符合题意;D、能用平方差公式分解因式,不符合题意;故选B.【点睛】本题主要考查了平方差公式分解因式,解题的关键在于能够熟练掌握平方差公式.8、D【解析】【分析】各项分解得到结果,即可作出判断.【详解】解:A、,不符合题意;B、,不符合题意;C、,不符合题意;D、因式分解正确,符合题意,故选:D.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.9、A【解析】【分析】根据题意利用平方差公式将变形,进而整体代入条件即可求得答案.【详解】解:.故选:A.【点睛】本题考查代数式求值,熟练掌握平方差公式的运用以及结合整体思维分析是解题的关键.10、B【解析】【分析】用提公因式法,提取公因式即可求解.【详解】解:a2﹣9a=a(a﹣9).故选:B.【点睛】本题考查了因式分解,用到了提公因式法和公式法,因式分解一般是先考虑提公因式法,再考虑公式法,注意的是,因式分解要进行到再也不能分解为止.二、填空题1、4m2n2【解析】【分析】找到系数的公共部分,再找到因式的公共部分即可.【详解】解:由于4和12的公因数是4,m2n2和m3n2的公共部分为m2n2,所以4m2n2与12m3n2的公因式是4m2n2.故答案为4m2n2.【点睛】本题主要考查公因式,熟练掌握如何去找公因式是解题的关键.2、##【解析】【分析】根据完全平方公式进行因式分解即可.【详解】解:原式,故答案为:.【点睛】本题考查了根据完全平方公式因式分解性,掌握完全平方公式是解题的关键.3、##【解析】【分析】将原多项式分组变形,利用完全平方公式和平方差公式分解因式即可.【详解】解:====,故答案为:.【点睛】本题考查因式分解、完全平方公式、平方差公式,熟记公式,灵活运用因式分解的方法是解答的关键.4、【解析】【分析】首先提取公因式,再根据平方差公式计算,即可得到答案.【详解】故答案为:.【点睛】本题考查了因式分解的知识;解题的关键是熟练掌握平方差公式的性质,从而完成求解.5、##【解析】【分析】先提取公因式5,后用和的完全平方公式即可.【详解】∵,故答案为.【点睛】本题考查了因式分解,熟练掌握先提取公因式,后用公式的解题策略是解题的关键.三、解答题1、 (1)(2)(3)12.【解析】【分析】(1)先配完全平方,然后利用平方差公式即可.(2)先配方,然后根据求最值即可.(3)对移项、配方,根据平方大于等于0,确定每一项均为0,求解边长,进而得出周长.(1)解:.(2)解:∵∴∴多项式的最小值为.(3)解:∵∴即∴∴,,∴,,∴的周长.【点睛】本题考查了完全平方公式与平方差公式分解因式,代数式的最值,平方等知识.解题的关键在于正确的配方.2、 (1)(x+2)2(x﹣2)2(2)(a﹣2)(m﹣1)(m+1)【解析】【分析】(1)把(a2﹣3)看作一个整体用完全平方公式因式分解,再用平方差公式因式分解;(2)先把m2(a﹣2)+(2﹣a)化为m2(a﹣2)﹣(a﹣2)的形式,然后提取公因式,再用平方差公式因式分解.(1)解:(1)(x2﹣3)2﹣2(x2﹣3)+1=(x2﹣3﹣1)2=(x+2)2(x﹣2)2;(2)解:m2(a﹣2)+(2﹣a)=m2(a﹣2)﹣(a﹣2)=(a﹣2)(m2﹣1)=(a﹣2)(m﹣1)(m+1).【点睛】本题考查了因式分解,解题根据是熟练运用公式法和提取公因式法进行因式分解.3、.【解析】【分析】综合利用提公因式法和完全平方公式进行因式分解即可得.【详解】解:原式.【点睛】本题考查了因式分解,熟练掌握因式分解的各方法是解题关键.4、 (1)2x2ny6n(2)2a+3ab﹣(3)b(a+4)(a﹣4)(4)5x(x﹣2y)2【解析】【分析】(1)先利用积的乘方运算性质化简,再合并同类项即可;(2)利用多项式除以单项式运算法则计算即可;(3)先提公因式b,再用平方差公式继续分解即可;(4)先提公因式5x,再用完全平方公式继续分解即可.(1)解:原式=x2ny6n+x2ny6n=2x2ny6n;(2)解:(4a2b+6a2b2﹣ab2)÷2ab=4a2b÷2ab+6a2b2÷2ab﹣ab2÷2ab=2a+3ab﹣.(3)解:原式=b(a2﹣16)=b(a+4)(a﹣4);(4)5、 (1)C(2)不彻底 , (3)【解析】【分析】(1)先根据多项式乘以多项式计算,再用完全平方公式因式分解计算即可(2)利用完全平方公式因式分解即可(3)模仿给出的步骤,进行因式分解即可(1)∵,∴运用了两数和的完全平方公式.故选C.(2)∵,∴因式分解不彻底.故答案为:不彻底,.(3),解:设,则原式.【点睛】本题考查因式分解、完全平方公式、多项式乘以多项式以及幂的乘方.理解题意,利用换元法是解题的关键.
相关试卷
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试课时训练,共19页。试卷主要包含了已知实数x,y满足,下列因式分解中,正确的是,如果x2+kx﹣10=等内容,欢迎下载使用。
这是一份数学七年级下册第十一章 因式分解综合与测试同步测试题
这是一份冀教版七年级下册第十一章 因式分解综合与测试综合训练题,共17页。试卷主要包含了下列各式因式分解正确的是等内容,欢迎下载使用。