冀教版七年级下册第十一章 因式分解综合与测试课时练习
展开
这是一份冀教版七年级下册第十一章 因式分解综合与测试课时练习,共18页。试卷主要包含了已知实数x,y满足,下列变形,属因式分解的是,下列多项式中有因式x﹣1的是等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列等式从左到右的变形,属于因式分解的是( )A.(x+1)(x﹣1)=x2﹣1 B.x2﹣8x+16=(x﹣4)2C.x2﹣2x+1=x(x﹣1)+1 D.x2﹣4y2=(x+4y)(x﹣4y)2、下列因式分解正确的是( )A.a2+1=a(a+1) B.C.a2+a﹣5=(a﹣2)(a+3)+1 D.3、不论x,y取何实数,代数式x2-4x+y2-6y+13总是( )A.非负数 B.正数 C.负数 D.非正数4、已知实数x,y满足:x2−+2=0,y2−+2=0,则2022|x−y|的值为( )A. B.1 C.2022 D.5、下列多项式能使用平方差公式进行因式分解的是( )A. B. C. D.6、下列等式中,从左到右的变形是因式分解的是( )A. B.C. D.7、下列变形,属因式分解的是( )A. B.C. D.8、下列多项式中有因式x﹣1的是( )①x2+x﹣2;②x2+3x+2;③x2﹣x﹣2;④x2﹣3x+2A.①② B.②③ C.②④ D.①④9、对于一个图形,通过两种不同的方法计算它的面积,可以得到一个等式,例如图①可以得到用完全平方公式进行因式分解的等式a2+2ab+b2=(a+b)2,如图②是由4个长方形拼成的一个大的长方形,用不同的方式表示此长方形的面积,由此不能得到的因式分解的等式是( )A.a(m+n)+b(m+n)=(a+b)(m+n)B.m(a+b)+n(a+b)=(a+b)(m+n)C.am+bm+an+bn=(a+b)(m+n)D.ab+mn+am+bn=(a+b)(m+n)10、下列各式中,从左到右的变形是因式分解的是( )A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2C.x2﹣4xy+4y2=(x﹣2y)2 D.x2+1=x(x+)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若,则_________.2、因式分解:______.3、在实数范围内因式分解:x2﹣6x+1=_____.4、把多项式因式分解的结果是_______.5、若实数满足,则___________.三、解答题(5小题,每小题10分,共计50分)1、在学习自然数时,我们发现一种特殊的自然数—“三顺数”.定义1:对于四位自然数n,若千位数字为6,各个数位数字均不为0,能被6整除,且数n的各个数位数字之和也恰好能被6整除,则称这个自然数n为“三顺数”.例如:6336是“三顺数”,因为6336÷6=1056,且(6+3+3+6)÷6=3;6216不是“三顺数”,因为6216÷6=1036,但6+2+1+6=15不能被6整除.定义2:将任意一个“三顺数”n的前两位数字与后两位数字交换,交换后得到一个新的四位数n′,规定:T(n)=.(1)判断6426,6726是否为“三顺数”,并说明理由;(2)若n是一个“三顺数”,它的百位数字比十位数字的2倍小2,求T(n)的最大值.2、计算:(1)(xny3n)2+(x2y6)n;(2)(4a2b+6a2b2﹣ab2)÷2ab;(3)a2b﹣16b;(分解因式)(4)5x3﹣20x2y+20xy2(分解因式).3、分解因式:x3y﹣2x2y2+xy3.4、如果的三边长满足等式,试判断此的形状并写出你的判断依据.5、因式分解:(1)4x4+4x3+x2;(2)(2m+3)2﹣m2. -参考答案-一、单选题1、B【解析】【分析】根据因式分解的定义“把一个多项式化成几个整式的积的形式叫做因式分解”进行解答即可得.【详解】解:A、,不是因式分解,选项说法错误,不符合题意;B、,是因式分解,选项说法正确,符合题意;C、,不是因式分解,选项说法错误,不符合题意;D、左、右不相等,选项说法错误,不符合题意;故选B.【点睛】本题考查了因式分解,解题的关键是熟记因式分解的定义.2、D【解析】【分析】根据因式分解的定义严格判断即可.【详解】∵+1≠a(a+1)∴A分解不正确;∵,不是因式分解,∴B不符合题意;∵(a﹣2)(a+3)+1含有加法运算,∴C不符合题意;∵,∴D分解正确;故选D.【点睛】本题考查了因式分解,即把一个多项式写成几个因式的积,熟练进行因式分解是解题的关键.3、A【解析】【分析】先把原式化为,结合完全平方公式可得原式可化为从而可得答案.【详解】解:x2-4x+y2-6y+13 故选A【点睛】本题考查的是代数式的值,非负数的性质,利用完全平方公式分解因式,掌握“”是解本题的关键.4、B【解析】【分析】利用偶次方的非负性得到x>0,y>0,两式相减,可求得x-y=0,据此即可求解.【详解】解:∵x2−+2=0①,y2−+2=0②,∴x2+2=,y2+2=,∵x2+20,y2+20,∴x>0,y>0,①-②得:x2−-y2+=0,整理得:(x-y)(x+y+)=0,∵x>0,y>0,∴x+y+>0,∴x-y=0,∴2022|x−y|=20220=1,故选:B.【点睛】本题考查了因式分解的应用,非负性的应用,由偶次方的非负性得到x>0,y>0是解题的关键.5、B【解析】【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断即可求解.【详解】解:A、,不能进行因式分解,不符合题意;B、﹣m2+1=1﹣m2=(1+m)(1﹣m),可以使用平方差公式进行因式分解,符合题意;C、,不能使用平方差公式进行因式分解,不符合题意;D、,不能进行因式分解,不符合题意;故选:B.【点睛】本题考查平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.平方差公式:a2﹣b2=(a+b)(a﹣b).6、D【解析】【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解)、平方差公式()逐项判断即可得.【详解】解:A、等式右边不是整式积的形式,不是因式分解,则此项不符题意;B、是整式的乘法运算,不是因式分解,则此项不符题意;C、等式右边等于,与等式左边不相等,不是因式分解,则此项不符题意;D、等式右边等于,即等式的两边相等,且等式右边是整式积的形式,是因式分解,则此项符合题意;故选:D.【点睛】本题考查了因式分解的定义、整式的乘法运算,熟记因式分解的定义是解题关键.7、A【解析】【分析】依据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式判断即可.【详解】解:A、是因式分解,故此选项符合题意;B、分解错误,故此选项不符合题意;C、右边不是几个整式的积的形式,故此选项不符合题意;D、分解错误,故此选项不符合题意;故选:A.【点睛】本题主要考查的是因式分解的意义,掌握因式分解的定义是解题的关键.8、D【解析】【分析】根据十字相乘法把各个多项式因式分解即可判断.【详解】解:①x2+x﹣2=;②x2+3x+2=;③x2﹣x﹣2=;④x2﹣3x+2=.∴有因式x﹣1的是①④.故选:D.【点睛】本题考查了十字相乘法因式分解,对于形如的二次三项式,若能找到两数,使,且,那么就可以进行如下的因式分解,即.9、D【解析】【分析】由面积的和差关系以及S长方形ABCD=(a+b)(m+n)求解即可【详解】解:如图②,S长方形ABCD=(a+b)(m+n),A.S长方形ABCD=S长方形ABFH+S长方形HFCD=a(m+n)+b(m+n)=(a+b)(m+n),不符合题意;B.S长方形ABCD=S长方形AEGD+S长方形BCGE=m(a+b)+n(a+b)=(a+b)(m+n),不符合题意;C.S长方形ABCD=S长方形AEQH+S长方形HQGD+S长方形EBFQ+S长方形QFCG=am+bm+an+bn=(a+b)(m+n),不符合题意;D.不能得到ab+mn+am+bn=(a+b)(m+n),故D符合题意;故选:D.【点睛】本题考查了因式分解,整式乘法与图形的面积,数形结合是解题的关键.10、C【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:A.从左到右的变形不属于因式分解,故本选项不符合题意;B.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C.从左到右的变形属于因式分解,故本选项符合题意;D.等式的右边是分式与整式的积,即从左到右的变形不属于因式分解,故本选项不符合题意;故选:C.【点睛】此题主要考查因式分解的识别,解题的关键是熟知因式分解的意义,把一个多项式转化成几个整式积的形式.二、填空题1、2022【解析】【分析】根据,得,然后局部运用因式分解的方法达到降次的目的,整体代入求解即可.【详解】∵∴∴故填“2022”.【点睛】本题主要考查了因式分解,善于运用因式分解的方法达到降次的目的,渗透整体代入的思想是解决本题的关键.2、【解析】【分析】先提取公因式,再利用平方差公式计算即可得出答案.【详解】解:.【点睛】本题考查的是因式分解,比较简单,需要熟练掌握因式分解的方法以及步骤.3、【解析】【分析】将该多项式拆项为,然后用平方差公式进行因式分解.【详解】.故答案为:.【点睛】本题考查了因式分解,当要求在实数范围内进行因式分解时,分解的式子的结果一般要分到出现无理数为止.4、【解析】【分析】先提取公因式,在利用公式法计算即可;【详解】原式;故答案是:.【点睛】本题主要考查了利用提取公因式法和公式法进行因式分解,准确利用公式求解是解题的关键.5、【解析】【分析】把原式化为可得再利用非负数的性质求解从而可得答案.【详解】解: , 而 解得: 故答案为:【点睛】本题考查的是非负数的性质,利用完全平方公式的变形求解代数式的值,因式分解的应用,熟练的运用完全平方公式是解本题的关键.三、解答题1、 (1)6426是“三顺数”; 6726不是“三顺数”;理由见解析(2)40【解析】【分析】(1)根据“”三牛数的定义“求解.(2)先表示n,n′和T(n),再求最值.(1)∵6426÷6=1071,且(6+4+2+6)÷6=3∴6426是“三顺数”;∵6726÷6=1121,且6+7+2+6=21不能被6整除∴6726不是“三顺数”;(2)设n=,即这个四位数的百位,十位,个位数字分别为a,b,c.∴n′=.∴n=×100+,n′=×100+.∴=-.当-最大时,T(n)最大,此时应该使b尽可能小.①当b=1时,a=2b-2=0,不合题意;②b=2时,a=2b-2=2,此时,.6+2+2+c=10+c能被6整除,取c=2,n=6222.6222÷6=1037.∴T(n)的最大值=62-22=40.【点睛】本题考查用新定义解题,根据新定义,表示n,n′和T(n)是求解本题的关键.2、 (1)2x2ny6n(2)2a+3ab﹣(3)b(a+4)(a﹣4)(4)5x(x﹣2y)2【解析】【分析】(1)先利用积的乘方运算性质化简,再合并同类项即可;(2)利用多项式除以单项式运算法则计算即可;(3)先提公因式b,再用平方差公式继续分解即可;(4)先提公因式5x,再用完全平方公式继续分解即可.(1)解:原式=x2ny6n+x2ny6n=2x2ny6n;(2)解:(4a2b+6a2b2﹣ab2)÷2ab=4a2b÷2ab+6a2b2÷2ab﹣ab2÷2ab=2a+3ab﹣.(3)解:原式=b(a2﹣16)=b(a+4)(a﹣4);(4)3、【解析】【分析】先提取公因式,再运用完全平方公式分解即可.【详解】解:x3y﹣2x2y2+xy3==.【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式法和公式法进行因式分解,注意:分解要彻底.4、是等边三角形,理由见解析【解析】【分析】利用因式分解得出三边长的关系,即可判断三角形形状.【详解】解:是等边三角形证明:∵,∴.∴,即,∴,∴,即,∴是等边三角形.【点睛】本题考查了因式分解的应用,解题关键是熟练进行因式分解,得出三角形的三边关系.5、 (1)(2)【解析】【分析】(1)先提取公因式,然后再运用完全平方公式法因式分解即可;(2)运用平方差公式因式分解即可.(1)解:4x4+4x3+x2= x2(4x2+4x+1)=.(2)解:(2m+3)2﹣m2=(2m+3+m)(2m+3-m)=(3m+3)(m+3)=.【点睛】本题主要考查了因式分解,掌握提取公因式法和公式法因式分解是解答本题的关键.
相关试卷
这是一份冀教版七年级下册第十一章 因式分解综合与测试课后测评,共15页。试卷主要包含了下列变形,属因式分解的是,下列各式从左至右是因式分解的是,下列各式中,不能因式分解的是等内容,欢迎下载使用。
这是一份初中第十一章 因式分解综合与测试课后作业题,共17页。试卷主要包含了下列分解因式正确的是,下列因式分解正确的是,已知,,那么的值为,下列各式因式分解正确的是,下列多项式等内容,欢迎下载使用。
这是一份2021学年第十一章 因式分解综合与测试综合训练题,共15页。试卷主要包含了因式分解,当n为自然数时,,已知x,y满足,则的值为,已知x2+x﹣6=等内容,欢迎下载使用。