![2022年精品解析冀教版七年级数学下册第十一章 因式分解综合训练练习题第1页](http://img-preview.51jiaoxi.com/2/3/12719373/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析冀教版七年级数学下册第十一章 因式分解综合训练练习题第2页](http://img-preview.51jiaoxi.com/2/3/12719373/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析冀教版七年级数学下册第十一章 因式分解综合训练练习题第3页](http://img-preview.51jiaoxi.com/2/3/12719373/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版七年级下册第十一章 因式分解综合与测试课时作业
展开
这是一份冀教版七年级下册第十一章 因式分解综合与测试课时作业,共17页。试卷主要包含了已知c<a<b<0,若M=|a等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列等式中,从左到右的变形是因式分解的是( )A. B.C. D.2、下列各等式中,从左到右的变形是正确的因式分解的是( )A.2x•(x﹣y)=2x2﹣2xy B.(x+y)2﹣x2=y(2x+y)C.3mx2﹣2nx+x=x(3mx﹣2n) D.x2+3x﹣2=x(x+3)﹣23、下列多项式中,不能用公式法因式分解的是( )A. B. C. D.4、下列各式中,能用完全平方公式分解因式的是( )A. B.C. D. 5、下列从左到右的变形,是分解因式的是( )A.xy2(x﹣1)=x2y2﹣xy2 B.2a2+4a=2a(a+2)C.(a+3)(a﹣3)=a2﹣9 D.x2+x﹣5=(x﹣2)(x+3)+16、把多项式x3﹣2x2+x分解因式结果正确的是( )A.x(x2﹣2x) B.x2(x﹣2)C.x(x+1)(x﹣1) D.x(x﹣1)27、下列多项式中能用平方差公式分解因式的是( )A.﹣a2﹣b2 B.x2+(﹣y)2C.(﹣x)2+(﹣y)2 D.﹣m2+18、下列各式从左到右的变形中,是因式分解的为( )A.x(a﹣b)=ax﹣bx B.x2﹣3x+1=x(x﹣3)+1C.x2﹣4=(x+2)(x﹣2) D.m+1=x(1+)9、已知c<a<b<0,若M=|a(a﹣c)|,N=|b(a﹣c)|,则M与N的大小关系是( )A.M<N B.M=N C.M>N D.不能确定10、下列多项式:(1)a2+b2;(2)x2-y2;(3)-m2+n2;(4)-b2-a2;(5)-a6+4,能用平方差公式分解的因式有( )A.2个 B.3个 C.4个 D.5个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、把多项式-27分解因式的结果是________.2、因式分解:_______.3、分解因式:________.4、分解因式:________.5、分解因式:__________.三、解答题(5小题,每小题10分,共计50分)1、在因式分解的学习中我们知道对二次三项式可用十字相乘法方法得出,用上述方法将下列各式因式分解:(1)__________.(2)__________.(3)__________.(4)__________.2、阅读题在现今“互联网+”的时代,密码与我们的生活已经密切相连,密不可分,而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的密码就很有必要了.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式x3﹣x2因式分解的结果为x2(x﹣1),当x=5时,x2=25,x﹣1=04,此时可以得到数字密码2504或0425;如多项式x3+2x2﹣x﹣2因式分解的结果为(x﹣1)(x+1)(x+2),当x=10时,x﹣1=09,x+1=11,x+2=12,此时可以得到数字密码091112.(1)根据上述方法,当x=12,y=5时,求多项式x3﹣xy2分解因式后可以形成哪些数字密码;(写出三个)(2)若一个直角三角形的周长12,斜边长为5,其中两条直角边分别为x,y,求出一个由多项式x3y+xy3分解因式后得到密码;(只需一个即可)(3)若多项式x2+(m﹣3n)x﹣6n因式分解后,利用本题的方法,当x=25时可以得到一个密码2821,求m、n的值.3、(1)整式乘法:(2a2b)3; (2)分解因式:x3-2x2+x4、分解因式:5、因式分解(1)n2(m﹣2)﹣n(2﹣m)(2)(a2+4)2﹣16a2. -参考答案-一、单选题1、D【解析】【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解)、平方差公式()逐项判断即可得.【详解】解:A、等式右边不是整式积的形式,不是因式分解,则此项不符题意;B、是整式的乘法运算,不是因式分解,则此项不符题意;C、等式右边等于,与等式左边不相等,不是因式分解,则此项不符题意;D、等式右边等于,即等式的两边相等,且等式右边是整式积的形式,是因式分解,则此项符合题意;故选:D.【点睛】本题考查了因式分解的定义、整式的乘法运算,熟记因式分解的定义是解题关键.2、B【解析】【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】解:A、是整式的乘法,不是因式分解,故此选项不符合题意;B、(x+y)2﹣x2=2xy+y2=y(2x+y),把一个多项式转化成几个整式乘积的形式,是因式分解,故此选项符合题意;C、3mx2﹣2nx+x=x(3mx﹣2n+1),故此选项不符合题意;D、没把一个多项式转化成几个整式乘积的形式,不是因式分解,故此选项不符合题意.故选:B.【点睛】本题考查了因式分解的定义.严格按照因式分解的定义去验证每个选项是正确解答本题的关键.3、D【解析】【分析】利用完全平方公式把,分解因式,利用平方差公式把,从而可得答案.【详解】解:故A不符合题意;故B不符合题意;故C不符合题意;,不能用公式法分解因式,故D符合题意;故选D【点睛】本题考查的是利用平方差公式与完全平方公式分解因式,熟悉平方差公式与完全平方公式的特点是解题的关键.4、D【解析】【分析】根据完全平方公式法分解因式,即可求解.【详解】解:A、不能用完全平方公式因式分解,故本选项不符合题意;B、不能用完全平方公式因式分解,故本选项不符合题意;C、不能用完全平方公式因式分解,故本选项不符合题意;D、能用完全平方公式因式分解,故本选项符合题意;故选:D【点睛】本题主要考查了完全平方公式法分解因式,熟练掌握 是解题的关键.5、B【解析】【分析】根据因式分解的意义对各选项进行逐一分析即可.【详解】解:、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;、符合因式分解的意义,是因式分解,故本选项正确,符合题意;、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意.故选:B.【点睛】本题考查的是因式分解的意义,解题的关键是把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.6、D【解析】【分析】先提取公因式,再按照完全平方公式分解即可得到答案.【详解】解:x3﹣2x2+x 故选D【点睛】本题考查的是综合利用提公因式与公式法分解因式,掌握“利用完全平方公式分解因式”是解本题的关键.7、D【解析】【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.【详解】解:A、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;B、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;C、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;D、,可以利用平方差公式进行分解,符合题意;故选:D.【点睛】本题考查利用平方差公式因式分解,掌握利用平方差公式因式分解时,多项式需满足的结构特征是解题关键.8、C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故A错误,不符合题意;B、没把一个多项式转化成几个整式积的形式,故B错误,不符合题意;C、把一个多项式转化成几个整式积的形式,故C正确,符合题意;D、等号左右两边式子不相等,故D错误,不符合题意;故选C【点睛】本题考查了因式分解的意义,明确因式分解的结果应是整式的积的形式是解题的关键.9、C【解析】【分析】方法一:根据整式的乘法与绝对值化简,得到M-N=(a﹣c)(b﹣a)>0,故可求解;方法二:根据题意可设c=-3,a=-2,b=-1,再求出M,N,故可比较求解.【详解】方法一:∵c<a<b<0,∴a-c>0,∴M=|a(a﹣c)|=- a(a﹣c)N=|b(a﹣c)|=- b(a﹣c)∴M-N=- a(a﹣c)-[- b(a﹣c)]= - a(a﹣c)+ b(a﹣c)=(a﹣c)(b﹣a)∵b-a>0,∴(a﹣c)(b﹣a)>0∴M>N方法二: ∵c<a<b<0,∴可设c=-3,a=-2,b=-1,∴M=|-2×(-2+3)|=2,N=|-1×(-2+3)|=1∴M>N故选C.【点睛】此题主要考查有理数的大小比较与因式分解得应用,解题的关键求出M-N=(a﹣c)(b﹣a)>0,再进行判断.10、B【解析】【分析】平方差公式:,根据平方差公式逐一分析可得答案.【详解】解:a2+b2不能用平方差公式分解因式,故(1)不符合题意;x2-y2能用平方差公式分解因式,故(2)符合题意;-m2+n2能用平方差公式分解因式,故(3)符合题意;-b2-a2不能用平方差公式分解因式,故(4)不符合题意;-a6+4能用平方差公式分解因式,故(5)符合题意;所以能用平方差公式分解的因式有3个,故选B【点睛】本题考查的是利用平方差公式分解因式,掌握“”是解本题的关键.二、填空题1、3(m+3)(m-3)【解析】【分析】先提取公因数3,后利用平方差公式分解即可.【详解】∵-27=3()=3()=3(m+3)(m-3),故答案为:3(m+3)(m-3).【点睛】本题考查了因式分解,熟练掌握先提取公因式,后用公式法分解的基本思路是解题的关键.2、【解析】【分析】先提出公因式,再利用平方差公式进行分解,即可求解.【详解】解:.故答案为:【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法,并灵活选用合适的方法解答是解题的关键.3、##【解析】【分析】根据完全平方公式进行因式分解即可.【详解】解:原式,故答案为:.【点睛】本题考查了根据完全平方公式因式分解性,掌握完全平方公式是解题的关键.4、【解析】【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:原式=,=故答案为:.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.5、【解析】【分析】先提出公因式,再利用平方差公式分解,即可求解.【详解】解:.故答案为:【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法,并会灵活选用合适的方法解答是解题的关键.三、解答题1、 (1)(x-y)(x+6y)(2)(x-3a)(x-a-2)(3)(x+a-3b)(x-a-2b)(4)(20182x2+1)(x-1)【解析】【分析】(1)将-6y2改写成-y·6,然后根据例题分解即可;(2)将3a2+6a改写成,然后根据例题分解即可;(3)先化简,将改写,然后根据例题分解即可;(4)将改写成(2018-1)(2018+1),变形后根据例题分解即可;(1)解:原式==(x-y)(x+6y);(2)解:原式==(x-3a)(x-a-2);(3)解:原式====(x+a-3b)(x-a-2b);(4)解:原式====(20182x+1)(x-1) .【点睛】本题考查了十字相乘法因式分解,熟练掌握二次三项式可用十字相乘法方法得出是解答本题的关键.2、 (1)120717;121707,171207.(2)1225(3)m=5,n=2【解析】【分析】(1)首先把x3-xy2分解因式,然后求出当x=12,y=5时,x-y、x+y的值各是多少,写出可以形成的三个数字密码即可.(2)由题意得:,求出xy的值是多少,再根据x3y+xy3=xy(x2+y2),求出可得的数字密码为多少即可.(3)首先根据密码为2821,可得:当x=25时,x2+(m﹣3n)x﹣6n=(x+3)(x-4),据此求出m、n的值各是多少即可.(1)x3-xy2=x(x-y)(x+y),当x=12,y=5时,x-y=07,x+y=17,可得数字密码是120717;也可以是121707,171207.(2)由题意得:,解得xy=12,而x3y+xy3=xy(x2+y2),∴可得数字密码为1225.(3)∵密码为2821,∴当x=25时,∴x2+(m﹣3n)x﹣6n=(x+3)(x-4),即:x2+(m-3n)x-6n=x2-x-12,∴,解得.【点睛】此题主要考查了因式分解的应用,以及用“因式分解”法产生的密码的方法,要熟练掌握.3、(1)8a6b3;(2)x(x-1)2【解析】【分析】(1)根据整式的运算法则即可求出答案;(2)先提公因式,再利用完全平方公式分解因式即可.【详解】解:(1)原式=;(2)原式=.【点睛】本题考查了整式的混合运算及因式分解,解题的关键是熟练运用整式的运算法则及完全平方公式分解因式,本题属于基础题型.4、ab(4+a2)(2+a)(2-a)【解析】【分析】直接提取公因式ab,再利用平方差公式分解因式得出答案.【详解】解:原式=ab(16-a4)=ab(4+a2)(4-a2)=ab(4+a2)(2+a)(2-a).【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式是解题关键.5、(1)n(m﹣2)(n+1);(2)(a+2)2(a﹣2)2.【解析】【分析】(1)提取公因式,进行因式分解即可;(2)根据平方差公式以及完全平方公式因式分解即可.【详解】(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(a2+4)2﹣16a2=(a2+4)2﹣(4a)2=(a2+4a+4)(a2﹣4a+4)=(a+2)2(a﹣2)2【点睛】本题考查了因式分解,掌握提公因式法和公式法分解因式是解题的关键,注意分解要彻底.
相关试卷
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试练习,共15页。试卷主要包含了当n为自然数时,,下列因式分解正确的是,下列因式分解中,正确的是,下列各式中,不能因式分解的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试复习练习题,共16页。试卷主要包含了下列因式分解正确的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第十一章 因式分解综合与测试课后练习题,共19页。试卷主要包含了分解因式2a2,下列分解因式正确的是,下列因式分解正确的是等内容,欢迎下载使用。