2021学年第十一章 因式分解综合与测试单元测试课时练习
展开冀教版七年级数学下册第十一章 因式分解单元测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列由左到右的变形,是因式分解的是( )
A. B.
C. D.
2、已知a+b=2,a-b=3,则等于( )
A.5 B.6 C.1 D.
3、下列由左到右的变形,属于因式分解的是( )
A. B.
C. D.
4、下列各式能用完全平方公式进行分解因式的是( )
A.x2+1 B.x2+2x﹣1 C.x2+3x+9 D.
5、下列因式分解错误的是( )
A.3x-3y=3(x-y) B.x2-4=(x+2)(x-2)
C.x2+6x-9=(x+9)2 D.-x2-x+2=-(x-1)(x+2)
6、若、、为一个三角形的三边长,则式子的值( )
A.一定为正数 B.一定为负数 C.可能是正数,也可能是负数 D.可能为0
7、下列等式从左到右的变形,属于因式分解的是( )
A. B.
C. D.
8、下列等式中,从左到右的变形是因式分解的是( )
A.a(a-3)=a2-3a B.(a+3)2=a2+6a+9
C.6a2+1=a2(6+) D.a2-9=(a+3)(a-3)
9、下列因式分解正确的是( )
A. B.
C. D.
10、下列因式分解正确的是( )
A.16m2-4=(4m+2)(4m-2) B.m4-1=(m2+1)(m2-1)
C.m2-6m+9=(m-3)2 D.1-a2=(a+1)(a-1)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、分解因式:mx2﹣4mx+4m=________.
2、在○处填入一个整式,使关于的多项式可以因式分解,则○可以为________.(写出一个即可)
3、因式分解:5a2﹣45b2=_____.
4、计算下列各题:
(1)______; (2)______;
(3)______; (4)______.
5、把多项式分解因式结果是______.
三、解答题(5小题,每小题10分,共计50分)
1、计算:
(1)分解因式:2a3b+4a2b2+2ab3;
(2)化简:(m﹣n)2+(2m+n)(2m﹣n)﹣5m2.
2、因式分解:(x2+2x)2﹣7(x2+2x)﹣8.
3、因式分解:
4、分解因式:.
5、因式分解:
(1); (2).
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据因式分解的定义,对各选项作出判断,即可得出正确答案.
【详解】
解:A、,是因式分解,故此选项符合题意;
B、,原式分解错误,故本选项不符合题意;
C、右边不是整式的积的形式,故本选项不符合题意;
D、原式是整式的乘法运算,不是因式分解,故本选项不符合题意;
故选:A.
【点睛】
本题考查了分解因式的定义.解题的关键是掌握分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.
2、B
【解析】
【分析】
根据平方差公式因式分解即可求解
【详解】
∵a+b=2,a-b=3,
∴
故选B
【点睛】
本题考查了根据平方差公式因式分解,掌握平方差公式是解题的关键.
3、A
【解析】
【分析】
直接利用因式分解的定义分别分析得出答案.
【详解】
解:、,是因式分解,符合题意.
、,是整式的乘法运算,故此选项错误,不符合题意;
、,不符合因式分解的定义,故此选项错误,不符合题意;
、,不符合因式分解的定义,故此选项错误,不符合题意;
故选:A.
【点睛】
本题主要考查了因式分解的意义,解题的关键是正确把握分解因式的定义,即分解成几个式子相乘的形式.
4、D
【解析】
【分析】
根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项分析判断后利用排除法求解.
【详解】
解:A、x2+1不符合完全平方公式法分解因式的式子特点,故本选项不符合题意;
B、x2+2x﹣1不符合完全平方公式法分解因式的式子特点,故本选项不符合题意;
C、x2+3x+9不符合完全平方公式法分解因式的式子特点,故本选项不符合题意;
D、,故选项正确;
故选:D
【点睛】
本题考查了完全平方式的运用分解因式,关键是熟练掌握完全平方式的特点.
5、C
【解析】
【分析】
提取公因式判断A,根据平方差公式和完全平方公式分解因式判断B,C,D即可.
【详解】
解:显然对于A,B,D正确,不乖合题意,
对于C:右边≠左边,故C错误,符合题意;
故选:C.
【点睛】
本题考查了因式分解,熟练掌因式分解的方法是解题的关键.
6、B
【解析】
【分析】
先分解因式,再根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解.
【详解】
解:原式=(a-c+b)(a-c-b),
∵两边之和大于第三边,两边之差小于第三边,
∴a-c+b>0,a-c-b<0,
∵两数相乘,异号得负,
∴代数式的值小于0.
故选:B.
【点睛】
本题利用了因式分解,以及三角形中三边的关系:在三角形中,任意两边之和>第三边,任意两边之差<第三边.
7、B
【解析】
【分析】
根据因式分解的定义直接判断即可.
【详解】
解:A.等式从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;
B.等式从左到右的变形属于因式分解,故本选项符合题意;
C.没把一个多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意;
D.属于整式乘法,不属于因式分解,故本选项不符合题意;
故答案为:B.
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
8、D
【解析】
【分析】
根据分解因式的意义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式;进行作答即可.
【详解】
解:A、a(a-3)=a2-3a,属于整式乘法,不符合题意;
B、(a+3)2=a2+6a+9,属于整式乘法,不符合题意;
C、6a2+1=a2(6+)不是因式分解,不符合题意;
D、a2-9=(a+3)(a3)属于因式分解,符合题意;
故选:D
【点睛】
本题考查了因式分解的意义,属于基础题,解答本题的关键是熟练掌握因式分解的定义与形式.
9、B
【解析】
【分析】
直接利用提取公因式法以及十字相乘法分解因式,进而判断即可.
【详解】
解:A、,故此选项不合题意;
B、,故此选项符合题意;
C、,故此选项不合题意;
D、,不能分解,故此选项不合题意;
故选:B.
【点睛】
本题主要考查了提取公因式法以及十字相乘法分解因式,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
10、C
【解析】
【分析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义即可求解.
【详解】
解:A、16m2-4=4(4 m2-1)=4(m+1)(m-1),故该选项错误;
B、m4-1=(m2+1)(m2-1)=(m+1)(m-1)(m2+1),故该选项错误;
C、m2-6m+9=(m-3)2,故该选项正确;
D、1-a2=(a+1)(1-a),故该选项错误;
故选:C.
【点睛】
本题考查了因式分解的意义,属于基础题,关键是掌握因式分解的定义.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
二、填空题
1、m(x-2)2
【解析】
【分析】
原式提取公因式,再利用完全平方公式分解即可.
【详解】
解:原式=m(x2-4x+4)=m(x-2)2,
故答案为:.
【点睛】
本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
2、2x
【解析】
【分析】
可根据完全平方公式或提公因数法分解因式求解即可.
【详解】
解:∵,
∴○可以为2x、-2x、2x-1等,答案不唯一,
故答案为:2x.
【点睛】
本题考查因式分解,熟记常用公式,掌握因式分解的方法是解答的关键.
3、
【解析】
【分析】
原式提取公因式5,再利用平方差公式分解即可.
【详解】
解:原式=5(a2﹣9b2)
=5(a+3b)(a﹣3b).
故答案为:5(a+3b)(a﹣3b).
【点睛】
此题考查了运用提公因式法和平方差公式分解因式,正确掌握因式分解的方法是解题的关键.
4、
【解析】
【分析】
(1)根据同底数幂相乘运算法则计算即可;
(2)根据积的乘方的运算法则计算即可;
(3)根据幂的乘方的运算法则计算即可;
(3)根据提取公因式法因式分解即可.
【详解】
解:(1);
(2);
(3);
(4).
故答案是:(1);(2);(3);(4).
【点睛】
本题主要考查了同底数幂相乘、幂的乘方、积的乘方以及运用提取公因式法分解因式等知识点,灵活运用相关运算法则成为解答本题的关键.
5、
【解析】
【分析】
利用平方差公式分解得到结果,即可做出判断.
【详解】
解:
=
=
故答案为:
【点睛】
此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.
三、解答题
1、 (1)
(2)
【解析】
【分析】
(1)根据提公因式法先提出,进而根据完全平方公式因式分解即可;
(2)根据完全平方公式和平方差公式展开,进而合并同类项即可
(1)
解:原式
(2)
解:原式
【点睛】
本题考查了因式分解和整式的混合运算,掌握乘法公式是解题的关键.
2、(x﹣2)(x+4)(x+1)2
【解析】
【分析】
将x2+2x视为整体,利用十字相乘法因式分解,再结合因式分解与完全平方公式解题.
【详解】
解:原式=(x2+2x﹣8)(x2+2x+1)=(x﹣2)(x+4)(x+1)2.
【点睛】
本题考查因式分解,是重要考点,难度一般,掌握相关知识是解题关键.
3、
【解析】
【分析】
根据题意综合运用提取公因式法和公式法进行因式分解即可得出答案.
【详解】
解:
【点睛】
本题考查因式分解,熟练掌握并运用提取公因式法和公式法进行因式分解是解题的关键.
4、
【解析】
【分析】
先提取公因式y,再根据平方差公式进行二次分解即可求得答案.
【详解】
解:
故答案为:.
【点睛】
本题考查了提公因式法,公式法分解因式,解题的关键是注意分解要彻底.
5、(1);(2).
【解析】
【分析】
(1)提取公因式,进行因式分解;
(2)提取公因式后,再利用平方差公式进行因式分解.
【详解】
解:(1);
(2),
.
【点睛】
本题考查了因式分解,解题的关键是掌握提取公因式及公式法进行因式分解.
初中冀教版第十一章 因式分解综合与测试课后作业题: 这是一份初中冀教版第十一章 因式分解综合与测试课后作业题,共19页。试卷主要包含了因式分解,下列因式分解正确的是,已知c<a<b<0,若M=|a,把分解因式的结果是.等内容,欢迎下载使用。
初中数学冀教版七年级下册第十一章 因式分解综合与测试课时练习: 这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试课时练习,共18页。试卷主要包含了下列变形,属因式分解的是,把多项式分解因式,其结果是,下列各式从左至右是因式分解的是等内容,欢迎下载使用。
初中数学冀教版七年级下册第十一章 因式分解综合与测试同步达标检测题: 这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试同步达标检测题,共17页。试卷主要包含了下列各式因式分解正确的是,对于有理数a,b,c,有等内容,欢迎下载使用。