七年级下册第十一章 因式分解综合与测试达标测试
展开这是一份七年级下册第十一章 因式分解综合与测试达标测试,共17页。试卷主要包含了下列运算错误的是,下列因式分解正确的是等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解专题攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、不论x,y取何实数,代数式x2-4x+y2-6y+13总是( )
A.非负数 B.正数 C.负数 D.非正数
2、下列各等式中,从左到右的变形是正确的因式分解的是( )
A.2x•(x﹣y)=2x2﹣2xy B.(x+y)2﹣x2=y(2x+y)
C.3mx2﹣2nx+x=x(3mx﹣2n) D.x2+3x﹣2=x(x+3)﹣2
3、对于一个图形,通过两种不同的方法计算它的面积,可以得到一个等式,例如图①可以得到用完全平方公式进行因式分解的等式a2+2ab+b2=(a+b)2,如图②是由4个长方形拼成的一个大的长方形,用不同的方式表示此长方形的面积,由此不能得到的因式分解的等式是( )
A.a(m+n)+b(m+n)=(a+b)(m+n)
B.m(a+b)+n(a+b)=(a+b)(m+n)
C.am+bm+an+bn=(a+b)(m+n)
D.ab+mn+am+bn=(a+b)(m+n)
4、下列运算错误的是( )
A. B. C. D.(a≠0)
5、下列从左到右的变形,是因式分解的是( )
A.(x+4)(x﹣4)=x2﹣16 B.x2﹣x﹣6=(x+3)(x﹣2)
C.x2+1=x(x+) D.a2b+ab2=ab(a+b)
6、下列因式分解正确的是( )
A. B.
C. D.
7、下列多项式中,能用完全平方公式分解因式的是( )
A.a2+4 B.x2+6x+9 C.x2﹣2x﹣1 D.a2+ab+b2
8、下列式子从左到右的变形中,属于因式分解的是( )
A. B.
C. D.
9、把多项式分解因式,下列结果正确的是( )
A. B.
C. D.
10、多项式分解因式的结果是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在实数范围内分解因式﹣64=___.
2、已知a+b=4,ab=1,则a3b+2a2b2+ab3的值为________________.
3、若实数满足,则___________.
4、计算下列各题:
(1)______; (2)______;
(3)______; (4)______.
5、已知,,则代数式的值为______.
三、解答题(5小题,每小题10分,共计50分)
1、因式分解:
(1)
(2)
2、因式分解;
(1)ax2+2a2x+a3
(2)(a﹣b)(x﹣y)﹣(b﹣a)(x+y)
3、分解因式:.
4、因式分解:
(1)3a2﹣27;
(2)m3﹣2m2+m.
5、将下列多项式分解因式:
(1)
(2)
-参考答案-
一、单选题
1、A
【解析】
【分析】
先把原式化为,结合完全平方公式可得原式可化为从而可得答案.
【详解】
解:x2-4x+y2-6y+13
故选A
【点睛】
本题考查的是代数式的值,非负数的性质,利用完全平方公式分解因式,掌握“”是解本题的关键.
2、B
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.
【详解】
解:A、是整式的乘法,不是因式分解,故此选项不符合题意;
B、(x+y)2﹣x2=2xy+y2=y(2x+y),把一个多项式转化成几个整式乘积的形式,是因式分解,故此选项符合题意;
C、3mx2﹣2nx+x=x(3mx﹣2n+1),故此选项不符合题意;
D、没把一个多项式转化成几个整式乘积的形式,不是因式分解,故此选项不符合题意.
故选:B.
【点睛】
本题考查了因式分解的定义.严格按照因式分解的定义去验证每个选项是正确解答本题的关键.
3、D
【解析】
【分析】
由面积的和差关系以及S长方形ABCD=(a+b)(m+n)求解即可
【详解】
解:如图②,S长方形ABCD=(a+b)(m+n),
A.S长方形ABCD=S长方形ABFH+S长方形HFCD=a(m+n)+b(m+n)=(a+b)(m+n),不符合题意;
B.S长方形ABCD=S长方形AEGD+S长方形BCGE=m(a+b)+n(a+b)=(a+b)(m+n),不符合题意;
C.S长方形ABCD=S长方形AEQH+S长方形HQGD+S长方形EBFQ+S长方形QFCG=am+bm+an+bn=(a+b)(m+n),不符合题意;
D.不能得到ab+mn+am+bn=(a+b)(m+n),故D符合题意;
故选:D.
【点睛】
本题考查了因式分解,整式乘法与图形的面积,数形结合是解题的关键.
4、A
【解析】
【分析】
根据积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,即可判断.
【详解】
解:A. ,故该选项错误,符合题意;
B. ,故该选项正确,不符合题意;
C. ,故该选项正确,不符合题意;
D. (a≠0),故该选项正确,不符合题意,
故选A.
【点睛】
本题主要考查积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,熟练掌握运算法则是解题的关键.
5、D
【解析】
【分析】
分解因式就是把一个多项式化为几个整式的积的形式,因此,要确定从左到右的变形中是否为因式分解或者分解因式是否正确,逐项进行判断即可.
【详解】
A、结果不是积的形式,因而不是因式分解;
B、,因式分解错误,故错误;
C、 不是整式,因而不是因式分解;
D、满足因式分解的定义且因式分解正确;
故选:D.
【点睛】
题目主要考查的是因式分解的概念及方法,熟练掌握理解因式分解的定义及方法是解题关键.
6、B
【解析】
【分析】
直接利用提取公因式法以及十字相乘法分解因式,进而判断即可.
【详解】
解:A、,故此选项不合题意;
B、,故此选项符合题意;
C、,故此选项不合题意;
D、,不能分解,故此选项不合题意;
故选:B.
【点睛】
本题主要考查了提取公因式法以及十字相乘法分解因式,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
7、B
【解析】
【分析】
根据完全平方公式分解因式法解答.
【详解】
解:x2+6x+9=(x+3)2.
故选:B.
【点睛】
此题考查了利用完全平方公式分解因式,掌握该方法分解的多项式的特点:共三项,其中有两项为平方项,第三项为这两项底数的积的2倍.
8、B
【解析】
【分析】
把一个多项式化为几个整式的积的形式叫把这个多项式分解因式,根据定义逐一判断即可.
【详解】
解:是整式的乘法,故A不符合题意;
是因式分解,故B符合题意;
右边不是整式的积的形式,不是因式分解,故C不符合题意;
右边不是整式的积的形式,不是因式分解,故D不符合题意;
故选B
【点睛】
本题考查的是因式分解的定义,掌握“根据因式分解的定义判断变形是否是因式分解”是解本题的关键.
9、D
【解析】
【分析】
利用公式即可得答案.
【详解】
解:
故选:D.
【点睛】
此题考查了十字相乘法进行因式分解,解题的关键是掌握公式.
10、B
【解析】
【分析】
先提取公因式a,再根据平方差公式进行二次分解.平方差公式:a2-b2=(a+b)(a-b).
【详解】
解:ax2-ay2
=a(x2-y2)
=a(x+y)(x-y).
故选:B.
【点睛】
本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.
二、填空题
1、
【解析】
【分析】
利用平方差公式,进行分解因式即可.
【详解】
﹣64
=
=
=
=.
【点睛】
本题考查了因式分解,灵活运用平方差公式是解题的关键.
2、16
【解析】
【分析】
先提取公因式ab,然后再用完全平方公式因式分解,最后代入计算即可.
【详解】
解:a3b+2a2b2+ab3
=ab(a2+2ab+b2)
=ab(a+b)2
=1×42
=16.
故答案是16.
【点睛】
本题主要考查了因式分解的应用,掌握运用提取公因式法和完全平方公式因式分解是解答本题的关键.
3、
【解析】
【分析】
把原式化为可得再利用非负数的性质求解从而可得答案.
【详解】
解: ,
而
解得:
故答案为:
【点睛】
本题考查的是非负数的性质,利用完全平方公式的变形求解代数式的值,因式分解的应用,熟练的运用完全平方公式是解本题的关键.
4、
【解析】
【分析】
(1)根据同底数幂相乘运算法则计算即可;
(2)根据积的乘方的运算法则计算即可;
(3)根据幂的乘方的运算法则计算即可;
(3)根据提取公因式法因式分解即可.
【详解】
解:(1);
(2);
(3);
(4).
故答案是:(1);(2);(3);(4).
【点睛】
本题主要考查了同底数幂相乘、幂的乘方、积的乘方以及运用提取公因式法分解因式等知识点,灵活运用相关运算法则成为解答本题的关键.
5、12
【解析】
【分析】
把因式分解,再代入已知的式子即可求解.
【详解】
∵,,
∴
∴===3×4=12
故答案为:12.
【点睛】
此题主要考查代数式求值,运用完全平方公式因式分解,解题的关键是熟知因式分解的运用.
三、解答题
1、(1);(2)
【解析】
【分析】
(1)先提取公因式 再利用平方差公式分解因式即可;
(2)先计算整式的乘法运算,再利用完全平方公式分解因式即可.
【详解】
解:(1)
(2)
【点睛】
本题考查的是综合提公因式与公式法分解因式,掌握“利用平方差公式与完全平方公式分解因式”是解本题的关键.
2、 (1)
(2)
【解析】
【分析】
(1)直接提取公因式,再利用完全平方公式分解因式即可;
(2)直接提取公因式,进而分解因式即可.
【小题1】
解:
;
【小题2】
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确找出公因式是解题关键.
3、.
【解析】
【分析】
先将因式进行分组为,再综合利用提公因式法和平方差公式分解因式即可得.
【详解】
解:原式
.
【点睛】
本题考查了因式分解,熟练掌握因式分解的方法是解题关键.
4、 (1)3(a+3)(a-3)
(2)m(m-1)2
【解析】
【分析】
(1)先提公因式3,再利用平方差公式分解因式即可;
(2)先提公因式m,再利用完全平方公式分解因式即可.
【小题1】
解:原式=3(a2-9)
=3(a+3)(a-3);
【小题2】
原式=m(m2-2m+1)
=m(m-1)2.
【点睛】
此题主要考查了公式法以及提取公因式法分解因式,正确运用公式法分解因式是解题关键.
5、(1)-5x(x-5);(2)xy(2x-y)2
【解析】
【分析】
(1)提取公因式即可因式分解;
(2)先提取公因式,进而根据完全平方公式进行因式分解即可
【详解】
解:(1)
(2)
【点睛】
本题考查了提公因式法因式分解,公式法因式分解,熟练掌握因式分解的方法是解题的关键.
相关试卷
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试同步达标检测题,共16页。试卷主要包含了下列各式中,不能因式分解的是,已知实数x,y满足等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试课时练习,共18页。试卷主要包含了下列变形,属因式分解的是,把多项式分解因式,其结果是,下列各式从左至右是因式分解的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第十一章 因式分解综合与测试同步训练题,共16页。试卷主要包含了下列因式分解正确的是,下列因式分解正确的是.等内容,欢迎下载使用。