![2021-2022学年度冀教版七年级数学下册第十一章 因式分解同步练习试题(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12719059/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度冀教版七年级数学下册第十一章 因式分解同步练习试题(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12719059/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度冀教版七年级数学下册第十一章 因式分解同步练习试题(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12719059/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版七年级下册第十一章 因式分解综合与测试随堂练习题
展开
这是一份冀教版七年级下册第十一章 因式分解综合与测试随堂练习题,共18页。试卷主要包含了对于有理数a,b,c,有等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、不论x,y取何实数,代数式x2-4x+y2-6y+13总是( )A.非负数 B.正数 C.负数 D.非正数2、下列式子从左到右的变形中,属于因式分解的是( )A. B.C. D.3、当n为自然数时,(n+1)2﹣(n﹣3)2一定能( )A.被5整除 B.被6整除 C.被7整除 D.被8整除4、下列各式从左到右的变形中,是因式分解且完全正确的是( )A.(x+2)(x﹣2)=x2﹣4 B.x2﹣2x﹣3=x(x﹣2)﹣3C.x2﹣4x+4=(x﹣2)2 D.x3﹣x=x(x2﹣1)5、可以被24和31之间某三个整数整除,这三个数是( )A.25,26,27 B.26,27,28 C.27,28,29 D.28,29,306、下列多项式能使用平方差公式进行因式分解的是( )A. B. C. D.7、下列由左到右的变形,属于因式分解的是( )A. B.C. D.8、对于有理数a,b,c,有(a+100)b=(a+100)c,下列说法正确的是( )A.若a≠﹣100,则b﹣c=0 B.若a≠﹣100,则bc=1C.若b≠c,则a+b≠c D.若a=﹣100,则ab=c9、下列从左到右的变形属于因式分解的是( )A.x2+2x+1=x(x+2)+1 B.﹣7ab2c3=﹣abc•7bc2C.m(m+3)=m2+3m D.2x2﹣5x=x(2x﹣5)10、下列运算错误的是( )A. B. C. D.(a≠0)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若实数满足,则___________.2、分解因式:________.3、分解因式:2x3﹣x2=_____.4、分解因式:_________.5、把多项式因式分解的结果是_______.三、解答题(5小题,每小题10分,共计50分)1、已知xy=5,x2y﹣xy2﹣x+y=40.(1)求x﹣y的值.(2)求x2+y2的值.2、对于任意的两位数m=,满足1≤a≤5,0≤b≤4,a≥b,我们称这样的数为“兄弟数”.将m的十位数字与个位数字之和,放在m的左侧,得到一个新的三位数s1,放在m的两个数字中间得到一个新的三位数s2;将m的十位数字与个位数字之差,放在m的右侧得到一个新的三位数t1,放在m的两个数字中间得到一个新的三位数t2,用s1与t1的和减去s2与t2的和的差除以9的商记为F(m).例如,m=41,s1=541,s2=451,t1=413,t2=431,所以F(41)==8(1)计算:F(22);F(53);(2)若p,q都是“兄弟数”,其中p=10x+1,q=51+y(1≤x≤9,0≤y≤9,x,y是整数),规定:,当12F(p)+F(q)=139时,求K的最大值.3、因式分解:(1)(2)(3).4、(1)若且,,是正整数),则.你能利用上面的结论解决这个问题吗:如果,求的值;(2)已知,,求的值.5、计算:(1)(xny3n)2+(x2y6)n;(2)(4a2b+6a2b2﹣ab2)÷2ab;(3)a2b﹣16b;(分解因式)(4)5x3﹣20x2y+20xy2(分解因式). -参考答案-一、单选题1、A【解析】【分析】先把原式化为,结合完全平方公式可得原式可化为从而可得答案.【详解】解:x2-4x+y2-6y+13 故选A【点睛】本题考查的是代数式的值,非负数的性质,利用完全平方公式分解因式,掌握“”是解本题的关键.2、B【解析】【分析】把一个多项式化为几个整式的积的形式叫把这个多项式分解因式,根据定义逐一判断即可.【详解】解:是整式的乘法,故A不符合题意;是因式分解,故B符合题意;右边不是整式的积的形式,不是因式分解,故C不符合题意;右边不是整式的积的形式,不是因式分解,故D不符合题意;故选B【点睛】本题考查的是因式分解的定义,掌握“根据因式分解的定义判断变形是否是因式分解”是解本题的关键.3、D【解析】【分析】先把(n+1)2﹣(n﹣3)2分解因式可得结果为:从而可得答案.【详解】解: (n+1)2﹣(n﹣3)2 n为自然数所以(n+1)2﹣(n﹣3)2一定能被8整除,故选D【点睛】本题考查的是利用平方差公式分解因式,掌握“”是解题的关键.4、C【解析】【分析】根据因式分解的定义逐项分析即可.【详解】A.(x+2)(x﹣2)=x2﹣4是乘法运算,故不符合题意;B.x2﹣2x﹣3=x(x﹣2)﹣3的右边不是积的形式,故不符合题意;C.x2﹣4x+4=(x﹣2)2是因式分解,符合题意;D.x3﹣x=x(x2﹣1)=x(x+1)(x-1),原式分解不彻底,故不符合题意;故选C.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.5、B【解析】【分析】先提取公因式27,再逐步利用平方差公式分解因式,即可得到答案.【详解】解: 所以可以被26,27,28三个整数整除,故选B【点睛】本题考查的是利用平方差公式分解因式,掌握平方差公式的特点并灵活应用是解本题的关键.6、B【解析】【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断即可求解.【详解】解:A、,不能进行因式分解,不符合题意;B、﹣m2+1=1﹣m2=(1+m)(1﹣m),可以使用平方差公式进行因式分解,符合题意;C、,不能使用平方差公式进行因式分解,不符合题意;D、,不能进行因式分解,不符合题意;故选:B.【点睛】本题考查平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.平方差公式:a2﹣b2=(a+b)(a﹣b).7、A【解析】【分析】直接利用因式分解的定义分别分析得出答案.【详解】解:、,是因式分解,符合题意.、,是整式的乘法运算,故此选项错误,不符合题意;、,不符合因式分解的定义,故此选项错误,不符合题意;、,不符合因式分解的定义,故此选项错误,不符合题意;故选:A.【点睛】本题主要考查了因式分解的意义,解题的关键是正确把握分解因式的定义,即分解成几个式子相乘的形式.8、A【解析】【分析】将等式移项,然后提取公因式化简,根据乘法等式的性质,求解即可得.【详解】解:,,,∴或,即:或,A选项中,若,则正确;其他三个选项均不能得出,故选:A.【点睛】题目主要考查利用因式分解化简等式,熟练掌握因式分解的方法是解题关键.9、D【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.由定义判断即可.【详解】解:A.x2+2x+1=(x+1)2,故A不符合题意;B.-7ab2c3是单项式,不存在因式分解,故B不符合题意;C.m(m+3)=m2+3m是单项式乘多项式,故C不符合题意;D.2x2-5x=x(2x-5)是因式分解,故D符合题意;故选:D.【点睛】本题考查因式分解的意义,熟练掌握因式分解的定义,能够根据所给形式判断是否符合因式分解的变形是解题的关键.10、A【解析】【分析】根据积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,即可判断.【详解】解:A. ,故该选项错误,符合题意;B. ,故该选项正确,不符合题意;C. ,故该选项正确,不符合题意; D. (a≠0),故该选项正确,不符合题意,故选A.【点睛】本题主要考查积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,熟练掌握运算法则是解题的关键.二、填空题1、【解析】【分析】把原式化为可得再利用非负数的性质求解从而可得答案.【详解】解: , 而 解得: 故答案为:【点睛】本题考查的是非负数的性质,利用完全平方公式的变形求解代数式的值,因式分解的应用,熟练的运用完全平方公式是解本题的关键.2、【解析】【分析】先提取公因式-a,再用完全平方公式分解因式得出答案.【详解】解:,故答案为:【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解因式,分解因式要彻底是解题关键.3、x2(2x﹣1)【解析】【分析】根据提公因式法分解.【详解】解:2x3﹣x2=x2(2x﹣1),故答案为:x2(2x﹣1).【点睛】此题考查了因式分解,正确掌握因式分解的方法:提公因式法和公式法(平方差公式和完全平方公式、十字相乘)是解题的关键.4、##(a+1)( a-5)【解析】【分析】根据十字相乘法进行因式分解即可.【详解】解:,故答案为:.【点睛】本题考查了因式分解,熟练掌握十字相乘法是解本题的关键.5、【解析】【分析】先提取公因式,在利用公式法计算即可;【详解】原式;故答案是:.【点睛】本题主要考查了利用提取公因式法和公式法进行因式分解,准确利用公式求解是解题的关键.三、解答题1、(1)x﹣y=10;(2)x2+y2=110.【解析】【分析】(1)利用提取公因式法对(x2y﹣xy2﹣x+y)进行因式分解,代入求值即可.(2)利用完全平方公式进行变形处理得到:x2+y2=(x﹣y)2+2xy,代入求值即可.【详解】解:(1)∵xy=5,x2y﹣xy2﹣x+y=40,∴x2y﹣xy2﹣x+y=xy(x﹣y)﹣(x﹣y)=(xy﹣1)(x﹣y)∵xy=5,∴(5﹣1)(x﹣y)=40,∴x﹣y=10.(2)x2+y2=(x﹣y)2+2xy=102+2×5=110.【点睛】本题考查了因式分解和完全平方公式,做题的关键是掌握完全平方公式的变形x2+y2=(x﹣y)2+2xy.2、 (1)22;31(2)【解析】【分析】(1)根据例题,分别求出s1,s2,t1,t2代入即可;(2)由p,q都是“兄弟数”,可以进一步确定x与y的范围为1≤x≤5,0≤y≤3,可以确定p与q的所有取值,再由12F(p)+F(q)=139进行验证即可确定符合条件的F(P),F(q)即可解题.(1)∵,∴ ∴;∵ ∴∴;(2)∵p,q都是“兄弟数”,∴1≤x≤5,0≤y≤3,∴p为11,21,31,41,51;q为51,52,53,54;∴F(11)=11,F(21)=10,F(31)=9,F(41)=8,F(51)=7;F(52)=19,F(54)=43;∵12F(p)+F(q)=139,∴F(P)=11,F(q)=7;F(p)=10,F(q)=19;F(p)=9,F(q)=31;F(p)=8,F(q)=43;∵,∴K的值分别为,∴K的最大值为.【点睛】本题考查因式分解的应用;能够正确理解题意,根据已知条件逐步缩小p与q的范围,确定满足条件的p与q是解题的关键.3、 (1)(2)(3)【解析】【分析】(1)首先提取公因式3,再用平方差公式进行二次分解即可;(2)首先提取公因式x,再用完全平方公式进行二次分解即可;(3)首先用平方差公式进行分解,再用完全平方公式进行二次分解即可.(1)解:;(2)解:原式;(3)解:原式.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.4、(1);(2)【解析】【分析】(1)化为同底数幂计算即可;(2)先因式分解,再整体代换求值.【详解】解:.,解得,.(2)原式=,把,代入,则原式.【点睛】本题考查幂的运算法则及因式分解的应用,化同底及正确的因式分解是求解本题的关键.5、 (1)2x2ny6n(2)2a+3ab﹣(3)b(a+4)(a﹣4)(4)5x(x﹣2y)2【解析】【分析】(1)先利用积的乘方运算性质化简,再合并同类项即可;(2)利用多项式除以单项式运算法则计算即可;(3)先提公因式b,再用平方差公式继续分解即可;(4)先提公因式5x,再用完全平方公式继续分解即可.(1)解:原式=x2ny6n+x2ny6n=2x2ny6n;(2)解:(4a2b+6a2b2﹣ab2)÷2ab=4a2b÷2ab+6a2b2÷2ab﹣ab2÷2ab=2a+3ab﹣.(3)解:原式=b(a2﹣16)=b(a+4)(a﹣4);(4)
相关试卷
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试练习题,共16页。试卷主要包含了下列各式从左至右是因式分解的是,已知,,求代数式的值为,已知x,y满足,则的值为等内容,欢迎下载使用。
这是一份冀教版七年级下册第十一章 因式分解综合与测试复习练习题,共17页。试卷主要包含了对于有理数a,b,c,有,如图,长与宽分别为a等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试课堂检测,共17页。试卷主要包含了下列多项式,下列分解因式正确的是,下列因式分解正确的是.等内容,欢迎下载使用。