初中数学冀教版七年级下册第六章 二元一次方程组综合与测试测试题
展开
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试测试题,共20页。试卷主要包含了有下列方程,已知a,b满足方程组则的值为等内容,欢迎下载使用。
冀教版七年级下册第六章二元一次方程组定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、方程组 消去x得到的方程是( )A.y=4 B.y=-14 C.7y=14 D.-7y=142、下列方程是二元一次方程的是( )A.x﹣xy=1 B.x2﹣y﹣2x=1 C.3x﹣y=1 D.﹣2y=13、有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需( )A.1.2元 B.1.05元 C.0.95元 D.0.9元4、下列各方程中,是二元一次方程的是( )A.=y+5x B.3x+1=2xy C.x=y2+1 D.x+y=15、有下列方程:①xy=1;②2x=3y;③;④x2+y=3; ⑤;⑥ax2+2x+3y=0 (a=0),其中,二元一次方程有( )A.1个 B.2个 C.3个 D.4个6、为奖励期中考试中成绩优异的同学,七(二)班计划用50元购买笔记本和中性笔两种奖品,已知笔记本的价格为7元,中性笔的价格为2元,若两种奖品都买,则购买的方案有几种?( )A.2 B.3 C.4 D.57、用加减消元法解二元一次方程组时,下列方法中无法消元的是( )A. B. C. D.8、如图,已知长方形中,,,点E为AD的中点,若点P在线段AB上以的速度由点A向点B运动.同时,点Q在线段BC上由点C向点B运动,若与全等,则点Q的运动速度是( )A.6或 B.2或6 C.2或 D.2或9、已知a,b满足方程组则的值为( )A. B.4 C. D.210、若为都是方程ax+by=1的解,则a+b的值是( )A.0 B.1 C.2 D.3第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、某超市有甲,乙,丙三种坚果礼盒,它们都是由,,三种坚果组成,甲,乙,丙三种坚果礼盒的成本均为盒内,,三种坚果的成本之和。超市现有甲,乙的数量相等,丙的数量比甲的数量多25%,甲种坚果礼盒内装有种坚果5袋,种坚果1袋,种坚果3袋,乙种坚果礼盒内装有种坚果4袋,种坚果2袋,种坚果6袋,每盒甲种坚果礼盒的成本是1袋种坚果成本的15倍,销售利润率是60%,每盒乙种坚果礼盒的售价是成本的倍,每盒丙种坚果礼盒在成本的基础上提价60%后打八折销售,获利为1袋种坚果成本的5.6倍,如果超市将所有礼盒全部售出,则该超市出售这三种坚果礼盒获得的总利润率为______.2、将一张面值50元的人民币,兑换成5元或10元的零钱,两种人民币都要有,那么共有_____种兑换方案.3、某次数学竞赛以60分为及格分数线,参加竞赛的所有学生的平均分为66分,而其中所有成绩及格的学生的平均分为72分,所有成绩不及格的学生的平均分为58分.后来老师发现有一道题出错了,于是给每位学生的成绩加上5分;加分之后,所有成绩及格的学生的平均分变为了75分,所有成绩不及格的学生的平均分变为了59分;已知这次参赛学生人数介于15到30人之间,则参赛的学生有________人4、若是方程kx﹣3y=1的一个解,则k=_____.5、求方程组的解把方程组①代入②,得:____________,得出x=2,将x=2代入②得出:y=____________,所以方程组的解为:____________三、解答题(5小题,每小题10分,共计50分)1、列方程或方程组解应用题:某校积极推进垃圾分类工作,拟采购30L和120L两种型号垃圾桶用于垃圾投放.已知采购5个30L垃圾桶和9个120L垃圾桶共需付费1000元;采购10个30L垃圾桶和5个120L垃圾桶共需付费700元,求30L垃圾桶和120L垃圾桶的单价.2、对于任意一个三位正整数,如果满足百位上的数字小于个位上的数字,且百位上的数字与个位上的数字之和等于十位上的数字,那么称这个数为“时空伴随数”,用“时空伴随数”的十位数字的平方减去个位数字的平方再减去百位数字的平方,得到的结果记为.例如:,满足,且,所以143是“时空伴随数”,则;例如:,满足,但是,所以395不是“时空伴随数”;再如:,满足,但是,所以352不是“时空伴随数”.(1)判断264和175是不是“时空伴随数”?并说明理由;(2)若是“时空伴随数”,且的3倍与的十位数字之和能被7整除,求满足条件的“时空伴随数”以及的最大值.3、对于一个各个数位上的数字均不为零的三位自然数,若的十位数字等于百位数字与个位数字之和,则称这个自然数为“三峡数”.当三位自然数为“三峡数”时,交换的百位数字和个位数字后会得到一个三位自然数,规定.例如:当时,因为,所以583是“三峡数”;此时,则.(1)判断341和153是否是“二峡数”?并说明理由;(2)求的值;(3)若三位自然数(即的百位数字是,十位数字是,个位数字是,,,,是整数,)为“三峡数”,且时,求满足条件的所有三位自然数.4、六一前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,则1套文具和1套图书需多少元.5、目前,新型冠状病毒在我国虽可控可防,但不可松懈,某校欲购置规格分别为300ml和500ml的甲、乙两种免洗手消毒液共400瓶,其中甲消毒液15元/瓶,乙消毒液20元/瓶.(1)如果购买这两种消毒液共7500元,求甲、乙两种消毒液各购买多少瓶?(2)在(1)的条件下,若该校在校师生共1800人,平均每人每天都需使用10ml的免洗手消毒液,则这批消毒液可使用多少天? -参考答案-一、单选题1、D【解析】【分析】直接利用两式相减进而得出消去x后得到的方程.【详解】解:①-②得:-7y=14.故答案为:-7y=14,故选:D.【点睛】此题主要考查了解二元一次方程组,正确掌握加减运算法则是解题关键.2、C【解析】【分析】根据二元一次方程的定义逐个判断即可.含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.【详解】解:A、x﹣xy=1含有两个未知数,但未知数的最高次数是2次,∴x﹣xy=1不是二元一次方程;B、x2﹣y﹣2x=1含有两个未知数.未知数的最高次数是2次,∴x2﹣y﹣2x=1不是二元一次方程;C、3x﹣y=1含有两个未知数,未知数的最大次数是1次,∴3x﹣y=1是二元一次方程;D、﹣2y=1含有两个未知数,但分母上含有未知数,不是整式方程,∴﹣2y=1不是二元一次方程.故选:C.【点睛】此题主要考查了二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.3、B【解析】【分析】设一支铅笔、一本练习本和一支圆珠笔的单价分别为x、y和z元,根据“购铅笔3支,练习本7本,圆珠笔1支共需3.15元;购铅笔4支,练习本8本,圆珠笔2支共需4.2元”建立三元一次方程组,然后将两个方程联立,即可求得的值.【详解】设一支铅笔、一本练习本和一支圆珠笔的单价分别为x、y和z元,根据题意得:,②–①可得:.故选:B.【点睛】本题考查三元一次方程组的实际应用,解题关键是根据两个等量关系列出方程组,而利用整体思想,把所给两个等式整理为只含的等式.4、D【解析】【分析】根据二元一次方程的定义逐一排除即可.【详解】解:A、=y+5x不是二元一次方程,因为不是整式方程;B、3x+1=2xy不是二元一次方程,因为未知数的最高项的次数为2;C、x=y2+1不是二元一次方程,因为未知数的最高项的次数为2;D、x+y=1是二元一次方程.故选:D.【点睛】此题主要考查了二元一次方程定义关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.5、C【解析】略6、B【解析】【分析】设可以购进笔记本x本,中性笔y支,利用总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出购买方案的个数.【详解】解:设可以购进笔记本x本,中性笔y支,依题意得: ,∴ ,∵x,y均为正整数,∴ 或 或 ,∴共有3种购买方案,故选:B.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.7、D【解析】【分析】利用加减消元法逐项判断即可.【详解】A. ,可以消去x,不符合题意;B. ,可以消去y,不符合题意;C. ,可以消去x,不符合题意;D. ,无法消元,符合题意;故选:D【点睛】本题考查了加减消元法,解题关键是明确加减消元的方法,把相同未知数的系数变成相同或互为相反数,然后准确进行判断.8、A【解析】【分析】设Q运动的速度为x cm/s,则根据△AEP与△BQP得出AP=BP、AE=BQ或AP=BQ,AE=BP,从而可列出方程组,解出即可得出答案.【详解】解:∵ABCD是长方形,∴∠A=∠B=90°,∵点E为AD的中点,AD=8cm,∴AE=4cm,设点Q的运动速度为x cm/s,①经过y秒后,△AEP≌△BQP,则AP=BP,AE=BQ,,解得,,即点Q的运动速度cm/s时能使两三角形全等.②经过y秒后,△AEP≌△BPQ,则AP=BQ,AE=BP,,解得:,即点Q的运动速度6cm/s时能使两三角形全等.综上所述,点Q的运动速度或6cm/s时能使两三角形全等.故选:A.【点睛】本题考查全等三角形的判定及性质,涉及了动点的问题使本题的难度加大了,解答此类题目时,要注意将动点的运用时间t和速度的乘积当作线段的长度来看待,这样就能利用几何知识解答代数问题了.9、A【解析】【分析】求出方程组的解得到a与b的值,即可确定出-a-b的值.【详解】解:,①+②×5得:16a=32,即a=2,把a=2代入①得:b=2,则-a-b=-4,故选:A.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.10、C【解析】【分析】把为代入ax+by=1,建立方程组,再解方程组即可.【详解】解: 为都是方程ax+by=1的解, 解②得: 把代入①得: 故选C【点睛】本题考查的是二元一次方程的解,二元一次方程组的解法,掌握“利用方程的解建立新的二元一次方程”是解本题的关键.二、填空题1、45.31%.【解析】【分析】设每袋a种坚果成本为x,每袋b种坚果成本为y,每袋c种坚果成果为z,甲种礼盒有n盒,乙种礼盒有n盒,丙种礼盒有1.25n盒,根据已知条件求出甲、乙、丙礼盒的成本和售价以及利润,根据利润率=总利润÷成本,即可得出结果.【详解】解:设每袋a种坚果成本为x,每袋b种坚果成本为y,每袋c种坚果成果为z,甲种礼盒有n盒,乙种礼盒有n盒,丙种礼盒有1.25n盒,甲礼盒:5x+y+3z=15x,即y+3z=10x,售价为15x(1+60%)=25x,乙礼盒:成本=4x+2y+6z=4x+2×10x=24x,售价为×24x=36x,丙礼盒:设成本为m,则m(1+60%)×80%﹣m=5.6x,m=20x,售价为25.6x,甲礼盒利润25x﹣15x=10x,乙礼盒利润36x﹣24x=12x,丙礼盒利润5.6x,∴总利润率为≈45.31%,故答案为:45.31%.【点睛】本题主要考查列代数式,整式加减法,三元一次方程的实际应用,分析题意,找到关键的描述语,找到合适的等量关系,同时熟悉有关销售问题的概念和公式是解决问题的关键,属于中档题.2、4【解析】【分析】设兑换成面值5元的人民币x张,面值10元的人民币y张,根据兑换成零钱的总价值为50元,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出共有4种兑换方案.【详解】设兑换成面值5元的人民币x张,面值10元的人民币y张,依题意得:5x+10y=50,∴x=10﹣2y.又∵x,y均为正整数,∴或或或,∴共有4种兑换方案.故答案为:4.【点睛】本题考查了列二元一次方程组,利用二元一次方程组的解进行方案设计的方法,优化方案问题先要列举出所有可能的方案,再按题目要求分别求出每种方案的具体结果.3、28【解析】【分析】设加分前及格人数为x人,不及格人数为y,原来不及格加分为及格的人数为n,所以,用n分别表示x、y得到x+y=n,然后利用15<n<30,n为正整数,n为整数可得到n=5,从而得到x+y的值.【详解】解:设加分前及格人数为x人,不及格人数为y,原来不及格加分为及格的人数为n,根据题意得,,解得:,所以x+y=n,而15<n<30,n为正整数,n为整数,所以n=5,所以x+y=28,即该班共有28位学生.故答案为:28.【点睛】本题考查了二元一次方程组的应用,解题的关键是学会利用参数.构建方程组的模型解决问题.4、﹣5【解析】【分析】根据方程的解的定义,将代入方程kx−3y=1,可得−2k−9=1,故k=−5.【详解】解:由题意得:﹣2k﹣3×3=1.∴k=﹣5.故答案为:﹣5.【点睛】本题属于简单题,主要考查方程的解的定义,即使得方程成立的未知数的值.5、 x+x-2=2 0 【解析】略三、解答题1、30L垃圾桶的单价是20元,120L垃圾桶的单价是100元【解析】【分析】设垃圾桶的单价是元,垃圾桶的单价是元,等量关系为:买5个30L垃圾桶的钱+买9个120L垃圾桶的钱=1000 ;买10个30L垃圾桶的钱+买5个120L垃圾桶的钱=700 ;根据这两个等量关系列出方程组并解方程组即可.【详解】设垃圾桶的单价是元,垃圾桶的单价是元,依题意得:,解得:.即垃圾桶的单价是20元,垃圾桶的单价是100元.【点睛】本题考查了二元一次方程组的应用,关键是理解题意,找到等量关系并正确列出方程组.2、 (1)264是“时空伴随数”,175不是“时空伴随数”,理由见解析(2)36【解析】【分析】(1)根据定义直接判断即可;(2)根据定义设,进而根据整除的关系,列出二元一次方程,求其整数解即可求得,进而根据进行计算,并比较结果求得最大值.(1)264是“时空伴随数”,175不是“时空伴随数”,理由如下:∵且,∴264是“时空伴随数”.∵但是,∴175不是“时空伴随数”(2)∵是“时空伴随数”,∴设,(,,均为整数)∴能被7整除∴是7的倍数,∵,,∴,∴或或,,,∵,∴的最大值为36【点睛】本题考查了新定义,二元一次方程求整数解,理解题意是解题的关键.3、 (1)341是“三峡数”,153不是“三峡数”,理由见解析(2)(3)所有满足条件的是671、792【解析】【分析】(1)根据三峡数的定义分析即可;(2)根据计算;(3)根据列出关于a、b的二元一次方程,然后根据,求解;(1)341是“三峡数”,∵,∴341是“三峡数”;153不是“三峡数”,∵,∴153不是“三峡数”;(2);(3)由题知(,,,是整数),则,∴,, 则(,,,是整数),,,,答:所有满足条件的是671、792.【点睛】本题考查了新定义,以及解二元一次方程,正确理解“三峡数”的定义是解答本题的关键.4、1套文具和1套图书需48元【解析】【分析】设1套文具x元,1套图书y元,根据1套文具和3套图书需104元及3套文具和2套图书需116元,即可得出关于x、y的二元一次方程组,解方程即可解答.【详解】解:本题的等量关系:1套文具花费+3套图书花费=104元.3套文具花费+2套图书花费=116元.设一套文具x元,一套图书y元,由题意,得 : ,解得: ,∴x+y=48(元).答:1套文具和1套图书需48元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.5、 (1)甲种消毒液购买了100瓶,乙种消毒液购买了300瓶.(2)这批消毒液可使用10天.【解析】【分析】(1)设甲种消毒液购买x瓶,乙种消毒液购买y瓶,由甲、乙两种免洗手消毒液共400瓶,其中甲消毒液15元/瓶,乙消毒液20元/瓶,列二元一次方程组求解即可;(2)设这批消毒液可使用a天,由该校在校师生共1800人,平均每人每天都需使用10ml的免洗手消毒液,然后列出方程可求解即可.(1)解:设甲种消毒液购买了x瓶,乙种消毒液购买了y瓶,依题意得:,解得:.答:甲种消毒液购买了100瓶,乙种消毒液购买了300瓶.(2)解:设这批消毒液可使用a天,由题意可得:1800×10×a=100×300+300×500,解得:a=10,答:这批消毒液可使用10天.【点睛】本题主要考查了二元一次方程组的应用、一元一次方程的应用,根据题意设出合适未知数、正确列出方程和方程组是解答本题的关键.
相关试卷
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试同步测试题,共20页。试卷主要包含了已知是二元一次方程,则的值为,用代入消元法解关于,《九章算术》中记载等内容,欢迎下载使用。
这是一份数学七年级下册第六章 二元一次方程组综合与测试当堂达标检测题,共16页。
这是一份数学冀教版第六章 二元一次方程组综合与测试巩固练习,共17页。试卷主要包含了有下列方程,已知是方程的解,则k的值为等内容,欢迎下载使用。