冀教版七年级下册第六章 二元一次方程组综合与测试同步测试题
展开
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试同步测试题,共20页。试卷主要包含了已知是二元一次方程,则的值为,用代入消元法解关于,《九章算术》中记载等内容,欢迎下载使用。
冀教版七年级下册第六章二元一次方程组定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、将方程x+2y=11变形为用含x的式子表示y,下列变形中正确的是( )A.y= B.y= C.x=2y﹣11 D.x=11﹣2y2、关于的二元一次方程组的解满足,则k的值是( )A.2 B. C. D.33、己知是关于,的二元一次方程的解,则的值是( )A.3 B. C.2 D.4、已知是二元一次方程,则的值为( )A. B.1 C. D.25、用代入消元法解关于、的方程组时,代入正确的是( )A. B.C. D.6、为奖励期中考试中成绩优异的同学,七(二)班计划用50元购买笔记本和中性笔两种奖品,已知笔记本的价格为7元,中性笔的价格为2元,若两种奖品都买,则购买的方案有几种?( )A.2 B.3 C.4 D.57、关于x,y的二元一次方程组的解为正整数,则满足条件的所有整数a的和为( )A.1 B.﹣1 C.2 D.﹣38、《九章算术》中记载:“今有共买牛,人出六,不足四十;人出八,余四;问人数、牛价各几何?”其大意是:今有人合伙买牛,若每人出6钱,还差40钱;若每人出8钱,多余4钱,问合伙人数、牛价各是多少?设合伙人数为人,牛价为 钱,根据题意,可列方程组为( )A. B. C. D. 9、用代入消元法解二元一次方程组,将①代入②消去x,可得方程( )A.(y+2)+2y=0 B.(y+2)﹣2y=0 C.x=x+2 D.x﹣2(x﹣2)=010、用加减消元法解二元一次方程组时,下列方法中无法消元的是( )A. B. C. D.第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、中国的元旦,据传说起于三皇五帝之一的颛顼,距今已有3000多年的历史.“元旦”一词最早出现于《晋书》.“元旦节”前夕,某超市分别以每袋30元、20元、10元的价格购进腊排骨、腊香肠、腊肉各若干,由于该食品均是真空包装,只能成袋出售,每袋的售价分别为50元、40元、20元,元旦节当天卖出三种年货若干袋,元月2日腊排骨卖出的数量第一天腊排骨数量的3倍,腊香肠卖出的数量是第一天腊香肠数量的2倍,腊肉卖出的数量是第一天腊肉数量的4倍;元月3日卖出的腊排骨的数量是这三天卖出腊排骨的总数量的,卖出腊香肠的数量是前两天腊香肠数量和,卖出腊肉的数量是第二天腊肉数量的一半.若第三天三种年货的销售总额比第一天三种年货销售总额多1600元,这三天三种年货的销售总额为9350元,则这三天所售出的三种年货的总利润为______元.2、2021年11月2日,重庆市九龙坡区、长寿区分别新增1例新冠本土确诊.当疫情出现后,各级政府及有关部门高度重视,坚决阻断疫情传播.开州区赵家工业园区一家民营公司为了防疫需要,引进一条口罩生产线生产口罩,该产品有三种型号,通过市场调研后,按三种型号受消费者喜爱的程度分别对A型、B型、C型产品在成本的基础上分别加价20%,30%,45%出售(三种型号的成本相同).经过一个月的经营后,发现C型产品的销量占总销量的,且三种型号的总利润率为35%.第二个月,公司决定对A型产品进行升级,升级后A型产品的成本提高了25%,销量提高了20%;B型、C型产品的销量和成本均不变,且三种产品在第二个月成本基础上分别加价20%,30%,50%出售,则第二个月的总利润率为________.3、为确保信息安全,信息需加密传输,发送方由明文密文(加密),接收方由密文明文(解密),已知加密规则为:明文,,,对应密文,,,.例如,明文1,2,3,4对应密文5,7,14,16.当接收方收到密文9,9,24,28时,则解密得到的明文为 __.4、三元一次方程:含有___未知数,并且含有未知数的项的___都是____,这样的方程叫做三元一次方程.5、我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”这首诗的意思是说:“如果一间客房住七个人,那么就剩下七个人安排不下;如果一间客房住九个人,那么就空出一间客房.”问,现有客房多少间?房客多少人?设现有客房x间,房客y人,请你列出二元一次方程组:_____.三、解答题(5小题,每小题10分,共计50分)1、若一个三位正整数(各个数位上的数字均不为0)满足,则称这个三位正整数为“长久数”.对于一个“长久数”m,将它的百位数字和个位数字交换以后得到新数n,记.如:满足,则216为“长久数”,那么,所以.(1)求、的值;(2)对于任意一个“长久数”m,若能被5整除,求所有满足条件的“长久数”.2、已知xm-n+1y与-2xn-1y3m-2n-5是同类项,求m和n的值.3、下面是学习二元一次方程组时,老师提出的问题和两名同学所列的方程.问题:某个工人一天工作6个小时,可以生产零件一整箱和不足一箱的20个;由于特殊情况,今天他只工作4个小时,生产零件一整箱和不足一箱的4个,问这一箱零件和该工人每小时能生产的零件数分别是多少?小明所列方程: 小亮所列方程:根据以上信息,解答下列问题.(1)以上两个方程(组)中意义是否相同?______(填“是”或“否”);(2)小亮的方程所用等量关系______(填序号,“①每个小时生产的零件数”或“②4个小时生产的零件数相等”);(3)从以上两个方程(组)中任选一个求解,完整解答老师提出的问题.4、解方程组:.5、解方程组时,两位同学的解法如下:解法一:由①﹣②,得3x=﹣3解法二:由②得3x+(x﹣2y)=5③①代入③得3x+2=5(1)反思:上述两种解题过程中你发现解法 的解题过程有错误(填“一”或“二”);解二元一次方程组的基本思想 .(2)请选择一种你喜欢的方法解此方程组. -参考答案-一、单选题1、B【解析】【详解】解:,,.故选:B.【点睛】本题考查等式的性质,解题的关键是熟练运用等式的性质,本题属于基础题型.2、B【解析】【分析】解方程组,用含的式子表示,然后将方程组的解代入即可.【详解】解:,①-②得:,∵,∴,解得:,故选:B.【点睛】本题考查了二元一次方程组解,和二元一次方程组的解的应用,运用整体法得出,可以是本题变得简便.3、A【解析】【分析】将代入关于x,y的二元一次方程2x-y=27得到关于k的方程,解这个方程即可得到k的值.【详解】解:将代入关于x,y的二元一次方程2x-y=27得:2×3k-(-3k)=27.∴k=3.故选:A.【点睛】本题主要考查了二元一次方程的解和解一元一次方程,将方程的解代入原方程是解题的关键.4、C【解析】【分析】根据二元一次方程的定义,即含有两个未知数,且未知数的次数均为1,即可求解.【详解】解:∵是二元一次方程,∴ ,且 ,解得: .故选:C【点睛】本题主要考查了二元一次方程的定义,解题的关键是熟练掌握含有两个未知数,且未知数的次数均为1.5、A【解析】【分析】利用代入消元法把①代入②,即可求解.【详解】解:,把①代入②,得:.故选:A【点睛】本题主要考查了解二元一次方程组,解题的关键是熟练掌握二元一次方程组数为解法——代入消元法和加减消元法.6、B【解析】【分析】设可以购进笔记本x本,中性笔y支,利用总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出购买方案的个数.【详解】解:设可以购进笔记本x本,中性笔y支,依题意得: ,∴ ,∵x,y均为正整数,∴ 或 或 ,∴共有3种购买方案,故选:B.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.7、C【解析】【分析】先求出方程组的解,由方程组的解为正整数分析得出a值.【详解】解:解方程组,得, ∵方程组的解为正整数,∴a=0时,;a=2时,, ∴满足条件的所有整数a的和为0+2=2.故选:C.【点睛】此题考查了已知二元一次方程组的解求参数,解题的关键是求出方程组的解,由方程组解的情况分析得到a的值.8、B【解析】【分析】设合伙人数为人,牛价为 钱,根据“若每人出6钱,还差40钱;若每人出8钱,多余4钱,”列出方程组,即可求解.【详解】解:设合伙人数为人,牛价为 钱,根据题意得: .故选:B【点睛】本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.9、B【解析】【分析】把x﹣2y=0中的x换成(y+2)即可.【详解】解:用代入消元法解二元一次方程组,将①代入②消去x,可得方程(y+2)﹣2y=0,故选:B.【点睛】此题主要考查了解二元一次方程组,解方程组的基本思想是消元,基本方法是代入消元和加减消元.10、D【解析】【分析】利用加减消元法逐项判断即可.【详解】A. ,可以消去x,不符合题意;B. ,可以消去y,不符合题意;C. ,可以消去x,不符合题意;D. ,无法消元,符合题意;故选:D【点睛】本题考查了加减消元法,解题关键是明确加减消元的方法,把相同未知数的系数变成相同或互为相反数,然后准确进行判断.二、填空题1、4300【解析】【分析】设元旦节当天三种年货腊排骨、腊香肠、腊肉的销售数量分别是x、y、z(x、y、z均为正整数)袋,则三天的销售数量如下表:单位(袋) 腊排骨腊香肠腊肉元月1号 元月2号 元月3号 再列方程组,解方程组即可得到答案.【详解】解:设元旦节当天三种年货腊排骨、腊香肠、腊肉的销售数量分别是x、y、z(x、y、z均为正整数)袋,则,整理得,利用代入消元,得, 所有当,则 , 即 所有,,,所有总利润为(元).故答案为:4300【点睛】本题考查的是三元一次方程组的应用,方程组的正整数解问题,设出适当的未知数表示需要的量再确定相等关系列方程是解本题的关键.2、34%【解析】【分析】由题意得出A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A型、B型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意列出方程组,解得;第二个月A产品成本为(1+25%)a=a,B、C的成本仍为a,A产品销量为(1+20%)x=x,B产品销量为y,C产品销量为z,则可求得第二个月的总利润率.【详解】解:由题意得:A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A型、B型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意得:,解得:,第二个月A产品的成本提高了25%,成本为:(1+25%)a=a,B、C的成本仍为a,A产品销量为(1+20%)x=x,B产品销量为y,C产品销量为z,∴第二个季度的总利润率为:=0.34=34%.故答案为:34%.【点睛】本题考查了利用三元一次方程组解实际问题,正确理解题意,设出未知数列出方程组是解题的关键.3、5,2,5,7【解析】【分析】设解密得到的明文为,,,,加密规则得出方程组,求出,,,的值即可.【详解】解:设明文为,,,,由题意得:,解得:,则得到的明文为5,2,5,7.故答案为:5,2,5,7.【点睛】本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.4、 三个 次数 1【解析】【分析】由题意直接利用三元一次方程的定义进行填空即可.【详解】解:含有三个未知数,并且含有未知数的项的次数都是1,这样的方程叫做三元一次方程.故答案为:三个,次数,1.【点睛】本题考查三元一次方程的定义,注意掌握含有三个未知数,并且含有未知数的项的次数都是1,这样的方程叫做三元一次方程.5、【解析】【分析】设该店有客房x间,房客y人;根据一房七客多七客,一房九客一房空得出方程组即可.【详解】解:设该店有客房x间,房客y人;根据题意得:,故答案为:.【点睛】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.三、解答题1、 (1),(2)【解析】【分析】(1)根据定义求解即可;(2)根据新定义写出,,根据整式的加减化简,进而根据,且能被5整除,得出,解二元一次方程即可求解,从而求得.(1)解:∵当时,,∴当时,(2)设,则,能被5整除,是5的倍数,且是均不为0的正整数的正整数解为:又 所有满足条件的“长久数”【点睛】本题考查了二元一次方程组的应用,新定义,整除,理解题意是解题的关键.2、【解析】【详解】解:因为xm-n+1y与-2xn-1y3m-2n-5是同类项,所以,整理,得:④-③,得2m=8,所以m=4.把m=4代入③,得2n=6,所以n=3.所以当时,xm-n+1y与-2xn-1y3m-2n-5是同类项。3、 (1)是(2)②(3)这一箱零件和该工人每小时能生产的零件数分别是28个、8个.【解析】【分析】(1)根据所列方程分别得到小明和小亮所列方程中x的意义即可得到答案;(2)根据小亮所列方程的意义求解即可;(3)利用解一元一次方程和解二元一次方程组的方法求解即可.(1)解:由小明所列方程的意义可知,小明方程中x表示的是这一箱零件的个数,而由小亮所列方程的意义可知,小亮方程中的x表示的是这一箱零件的个数,∴以上两个方程(组)中x意义相同,故答案为:是;(2)解:根据小亮所列方程的意义可知小亮的方程所用等量关系4个小时生产的零件数相等,故答案为:②;(3)解:,把①-②得:,解得,把代入①得:,解得;去分母得:,去括号:,移项得:,合并得:,系数化为1得:,∴,∴这一箱零件和该工人每小时能生产的零件数分别是28个、8个.【点睛】本题主要考查了一元一次方程和二元一次方程组的应用,正确理解所列方程的意义是解题的关键.4、【解析】【详解】解:,①②,得,解得:,把代入①,得,解得:,所以方程组的解是.【点睛】本题考查了解二元一次方程组,解题的关键是能把二元一次方程组转化成一元一次方程.5、 (1)一,消元;(2)【解析】【分析】(1)上述两种解题过程中解法一的解题过程有错误,解二元一次方程组的基本思想消元思想;(2)用②①,消去,求出,再把的值代入①即可求出.(1)解:上述两种解题过程中解法一的解题过程有错误,解二元一次方程组的基本思想消元思想;故答案为:一;消元;(2)解:②①得:,解得,将代入①得:,解得,所以方程组的解为:.【点睛】此题考查了解二元一次方程组,解题的关键是掌握消元的思想和消元的方法,消元的方法有:代入消元法与加减消元法.
相关试卷
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试练习题,共17页。试卷主要包含了二元一次方程的解可以是,二元一次方程组的解是等内容,欢迎下载使用。
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试课后测评,共17页。试卷主要包含了在一次爱心捐助活动中,八年级,已知是二元一次方程,则的值为,已知x,y满足,则x-y的值为等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试复习练习题,共18页。试卷主要包含了下列方程是二元一次方程的是,若是方程组的解,则的值为等内容,欢迎下载使用。