初中数学冀教版七年级下册第六章 二元一次方程组综合与测试课时训练
展开冀教版七年级下册第六章二元一次方程组综合训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、方程组 消去x得到的方程是( )
A.y=4 B.y=-14 C.7y=14 D.-7y=14
2、用代入消元法解关于、的方程组时,代入正确的是( )
A. B.
C. D.
3、若是方程的解,则等于( )
A. B. C. D.
4、初一课外活动中,某兴趣小组80名学生自由组合分成12组,各组人数分别有5人、7人和8人三种情况,那么8人组最多可能有几组( )
A.5组 B.6组 C.7组 D.8组
5、《九章算术》中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元.若设共有人,该物品价值元,则根据题意可列方程组为( )
A. B. C. D.
6、如图,分别用火柴棍连续搭建等边三角形和正六边形,公共边只用一根火柴棍.如果搭建等边三角形和正六边形共用了2018根火柴,并且等边三角形的个数比正六边形的个数多7,那么连续搭建的等边三角形的个数是( )
A.291 B.292 C.293 D.294
7、用代入消元法解二元一次方程组,将①代入②消去x,可得方程( )
A.(y+2)+2y=0 B.(y+2)﹣2y=0 C.x=x+2 D.x﹣2(x﹣2)=0
8、下列方程组中,二元一次方程组有( )
①;②;③;④.A.4个 B.3个 C.2个 D.1个
9、若关于x,y的二元一次方程组的解,也是二元一次方程x+2y=﹣1的解,则a的值为( )
A.2 B.1 C. D.0
10、某学校体育有场的环形跑道长,甲、乙分别以一定的速度练习长跑和骑自行车.同时同地出发,如果反向而行,那么他们每隔相遇一次.如果同向而行,那么每隔乙就追上甲一次,设甲的速度为,乙的速度为,则可列方程组为( )
A. B.
C. D.
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、三元一次方程:含有___未知数,并且含有未知数的项的___都是____,这样的方程叫做三元一次方程.
2、已知是方程组的解,则计算的值是______.
3、程大位是我国明朝商人,珠算发明家,他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,问大、小和尚各有多少人?设大和尚人,小和尚人,根据题意可列方程组为______.
4、一元一次方程的一般形式为:______(a,b为常数,a≠0);一元一次不等式的一般形式为:______或______(a,b为常数,a≠0);二元一次方程的一般形式为:______(a,b,c为常数,a≠0,b≠0)
5、凤鸣文具厂生产的一种文具套装深受学生喜爱,已知该文具套装一套包含有1个笔袋,2只笔,3个笔记本,某文具超市向该厂订购了一批文具套装,需要厂家在15天内生产完该套装并交货.凤鸣文具厂将员工分为A、B、C三个组,分别生产笔袋、笔、笔记本,他们于某天零点开始工作,每天24小时轮班连续工作(假设每小时工作效率相同),若干天后的零点A组完成任务,再过几天后(不少于一天)的中午12点B组完成任务,再过几天(不少于一天)后的早晨6时C组完成任务.已知A、B、C三个组每天完成的任务数分别是270个、360个、360个,则该文具超市至少一共订购了 _____套文具套装.
三、解答题(5小题,每小题10分,共计50分)
1、解方程组:.
2、已知方程(k+2)x+(k-6)y=k+8是关于x,y的方程.
(1)k为何值时,方程为一元一次方程?
(2)k为何值时,方程为二元一次方程?
3、例3.林芳、向民、艳君三位同学去商店买文具用品,林芳说:“我买了4支水笔,2本笔记本,10本作文本共用了19元.”向民说:“我买了2支水笔,3本笔记本,10本练习本共用了20元,”艳君说:“我买了12本练习本,8本作文本共用了10元;作文本与练习本的价格是一样哦!”请根据以上内容,求出笔记本,水笔,练习本的价格.
4、解方程组:.
5、我们规定:若关于x的一元一次方程的解为,则称该方程为“和解方程”.例如:方程的解为,而,则方程为“和解方程”.
请根据上述规定解答下列问题:
(1)已知关于x的一元一次方程是“和解方程”,求m的值;
(2)已知关于x的一元一次方程是“和解方程”,并且它的解是,求,的值.
-参考答案-
一、单选题
1、D
【解析】
【分析】
直接利用两式相减进而得出消去x后得到的方程.
【详解】
解:
①-②得:
-7y=14.
故答案为:-7y=14,
故选:D.
【点睛】
此题主要考查了解二元一次方程组,正确掌握加减运算法则是解题关键.
2、A
【解析】
【分析】
利用代入消元法把①代入②,即可求解.
【详解】
解:,
把①代入②,得:.
故选:A
【点睛】
本题主要考查了解二元一次方程组,解题的关键是熟练掌握二元一次方程组数为解法——代入消元法和加减消元法.
3、B
【解析】
【分析】
把代入到方程中得到关于k的方程,解方程即可得到答案.
【详解】
解:∵是方程的解,
∴,
∴,
故选B.
【点睛】
本题主要考查了二元一次方程解的定义和解一元一次方程方程,熟知二元一次方程的解得定义是解题的关键.
4、B
【解析】
【分析】
设8人组有x组,7人组由y组,则5人组有(12﹣x﹣y)组,根据题意得方程8x+7y+(12﹣x﹣y)×5=80,于是得到结论.
【详解】
解:设8人组有x组,7人组由y组,则5人组有(12﹣x﹣y)组,
由题意得,8x+7y+(12﹣x﹣y)×5=80,
∴3x+2y=20,
当x=1时,y=,
当x=2时,y=7,
当x=4时,y=4,
当x=6时,y=1,
∴8人组最多可能有6组,
故选B.
【点睛】
本题考查了二元一次方程的应用,正确的理解题意是解题的关键.
5、A
【解析】
【分析】
根据题意可得等量关系:人数×8−3=物品价值;人数×7+4=物品价值,根据等量关系列出方程组即可.
【详解】
解:设有x人,物品价值y元,由题意得:
故选:A.
【点睛】
此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.
6、C
【解析】
【分析】
设连续搭建三角形x个,连续搭建正六边形y个,根据搭建三角形和正六边形共用了2018根火柴棍,并且三角形的个数比正六边形的个数多7个,列方程组求解即可.
【详解】
解:设连续搭建等边三角形x个,连续搭建正六边形y个,
由题意,得,
解得.
故选C.
【点睛】
本题考查了二元一次方程组的应用及图形的变化类问题,解答本题的关键是读懂题意,仔细观察图形,找出合适的等量关系,列方程组求解.
7、B
【解析】
【分析】
把x﹣2y=0中的x换成(y+2)即可.
【详解】
解:用代入消元法解二元一次方程组,将①代入②消去x,
可得方程(y+2)﹣2y=0,
故选:B.
【点睛】
此题主要考查了解二元一次方程组,解方程组的基本思想是消元,基本方法是代入消元和加减消元.
8、C
【解析】
【分析】
组成二元一次方程组的两个方程应共含有两个相同的未知数,且未知数的项最高次数都应是一次的整式方程.
【详解】
解:①、符合二元一次方程组的定义,故①符合题意;
②、第一个方程与第二个方程所含未知数共有3个,故②不符合题意;
③、符合二元一次方程组的定义,故③符合题意;
④、该方程组中第一个方程是二次方程,故④不符合题意.
故选:.
【点睛】
本题考查了二元一次方程组的定义,解题时需要掌握二元一次方程组满足三个条件:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.
9、D
【解析】
【分析】
解方程组,用a表示x,y,把x,y代入x+2y=﹣1中得到关于a的方程,解方程即可.
【详解】
解:,
①+②得
2x=2a+6,
x=a+3,
把代入①,得
a+3+y=-a+1,
y=-2a-2,
∵x+2y=﹣1
∴a+3+2(-2a-2)=-1,
∴a=0,
故选D.
【点睛】
本题考查了解二元一次方程组以及二元一次方程的解,解方程组,用a表示x,y,把x,y代入x+2y=﹣1中得到关于a的方程是解题的关键.
10、A
【解析】
【分析】
此题中的等量关系有:①反向而行,则两人20秒共走250米;②同向而行,则50秒乙比甲多跑250米.
【详解】
解:①根据反向而行,得方程为30(x+y)=400;
②根据同向而行,得方程为80(y-x)=400.
那么列方程组,
故选:A.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,注意追及问题和相遇问题不同的求解方法是解题的关键.
二、填空题
1、 三个 次数 1
【解析】
【分析】
由题意直接利用三元一次方程的定义进行填空即可.
【详解】
解:含有三个未知数,并且含有未知数的项的次数都是1,这样的方程叫做三元一次方程.
故答案为:三个,次数,1.
【点睛】
本题考查三元一次方程的定义,注意掌握含有三个未知数,并且含有未知数的项的次数都是1,这样的方程叫做三元一次方程.
2、1
【解析】
【分析】
把代入求出m和n的值,然后代入计算即可.
【详解】
解:把代入,得
,
①+②,得
2m=6,
∴m=3,
把m=3代入②,得
3+2n=-1,
∴n=-2,
∴=3-2=1,
故答案为:1.
【点睛】
本题考查了二元一次方程组的解,以及二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,灵活选择合适的方法是解答本题的关键.
3、
【解析】
【分析】
根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程即可.
【详解】
解:设大和尚人,小和尚人,
共有大小和尚100人,
;
大和尚1人分3个,小和尚3人分1个,正好分完100个馒头,
.
联立两方程成方程组得.
故答案为:.
【点睛】
本题考查二元一次方程组的应用,解决此类问题的关键就是认真对题,从题目中提取出等量关系,根据等量关系设未知数列方程组.
4、 ax+b=0 ax+b≥0 ax+b≤0 ax+by+c=0
【解析】
略
5、1350
【解析】
【分析】
设A组工作x天,B组工作(x+m+)天,C组工作(x+m++n+)(x,m,n都是正整数且m≥1,n≥1),x+m++n+<15,根据该文具套装一套包含有1个笔袋,2只笔,3个笔记本,列方程组求方程组的整数解即可.
【详解】
解:设A组工作x天,B组工作(x+m+)天,C组工作(x+m++n+)(x,m,n都是正整数且m≥1,n≥1),x+m++n+<15
根据题意
由①得③
由②得④
④-5×③得
∵m,n均为正整数,
∴m为奇数,
当m=1,n=2,x=5,x+m++n+=8<15;
当m=3,n=5,x=7,x+m++n+=15>15不合题意;
A组一共工作5天,270×5=1350个
该文具超市至少一共订购了1350套文具套装.
故答案为1350.
【点睛】
本题考查列三元一次方程组解应用题,方程的整数解,利用一套中的比例列方程组,得出是解题关键.
三、解答题
1、
【解析】
【详解】
解:,
①②,得,
解得:,
把代入①,得,
解得:,
所以方程组的解是.
【点睛】
本题考查了解二元一次方程组,解题的关键是能把二元一次方程组转化成一元一次方程.
2、 (1)k=-2或k=6;
(2)k≠-2且k≠6时
【解析】
【分析】
(1)根据一元次方程的定义,含有一个未知数,并且含未知数的项的次数为1的整式方程可得或 ,解方程组得;
(2)根据方程是二元一次方程方程的定义含有两个未知数,含未知数的项的次数为1的整式方程可得,解不等式组即可.
【小题1】
解:∵方程是一元一次方程,
∴或
∴解得k=-2或k=6.
∴当k=-2或k=6时,该方程是一元一次方程.
【小题2】
解:∵方程是二元一次方程,
∴
∴解得k≠-2且k≠6.
∴当k≠-2且k≠6时,该方程是二元一次方程.
【点睛】
本题考查一元一次方程的定义,二元一次方程方程的定义,掌握一元一次方程的定义,二元一次方程方程的定义是解题关键.
3、笔记本每本的价格是4元,水笔每支1.5元,练习本每本0.5元.
【解析】
【分析】
设笔记本每本的价格是x元,水笔每支y元,练习本或作文本每本的价格为z元,根据林芳、向民、艳君三个人的话可以建立三个方程,从而构成三元一次方程组,求出其解即可.
【详解】
设笔记本每本的价格是x元,水笔每支y元,练习本或作文本每本的价格为z元,
由题意得
解得
答:笔记本每本的价格是4元,水笔每支1.5元,练习本每本0.5元.
【点睛】
本题考查了列三元一次方程组解实际问题的运用,三元一次方程组的解法的运用,解答时找准等量关系建立方程是关键.
4、
【解析】
【分析】
由①②相加消去y,与③组成关于x、 z的二元-次方程组, 进一步解二元一次方程组, 求得答案即可.
【详解】
解:
①+②得,3x+z=6④
③④组成二元一次方程组得,
解得,
代入①得,y=2,
∴原方程组的解为.
【点睛】
本题考查三元一次方程组的解法,有加减法和代入法两种,一般选用加减法解方程组较简单.
5、(1)m=−;(2)m=−3,n=−
【解析】
【分析】
(1)根据和解方程的定义即可得出关于m的一元一次方程,解之即可得出结论;
(2)根据和解方程的定义即可得出关于m、n的二元一次方程组,解之即可得出m、n的值.
【详解】
解:(1)∵方程3x=m是和解方程,
∴=m+3,
解得:m=−.
(2)∵关于x的一元一次方程−2x=mn+n是“和解方程”,并且它的解是x=n,
∴−2n=mn+n,且mn+n−2=n,
解得m=−3,n=−.
【点睛】
本题考查新定义,一元一次方程的解,理解“和解方程”的定义,解二元一次方程组,将所求问题转化为一元一次方程的解是解题的关键.
初中数学冀教版七年级下册第六章 二元一次方程组综合与测试当堂检测题: 这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试当堂检测题,共18页。试卷主要包含了用代入消元法解关于等内容,欢迎下载使用。
冀教版七年级下册第六章 二元一次方程组综合与测试课后测评: 这是一份冀教版七年级下册第六章 二元一次方程组综合与测试课后测评,共18页。试卷主要包含了已知关于x,若关于x等内容,欢迎下载使用。
冀教版七年级下册第六章 二元一次方程组综合与测试课时练习: 这是一份冀教版七年级下册第六章 二元一次方程组综合与测试课时练习,共19页。试卷主要包含了有下列方程组,《孙子算经》记载等内容,欢迎下载使用。