初中数学冀教版七年级下册第六章 二元一次方程组综合与测试当堂检测题
展开冀教版七年级下册第六章二元一次方程组月考
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、下列方程中,①x+y=6;②x(x+y)=2;③3x-y=z+1;④m+=7是二元一次方程的有( )
A.1个 B.2个 C.3个 D.4个
2、已知,则( )
A. B. C. D.
3、某污水处理厂库池里现有待处理的污水m吨.另有从城区流入库池的待处理污水(新流入污水按每小时n吨的定流量增加).若该厂同时开动2台机组,需30小时处理完污水;若同时开动3台机组,需15小时处理完污水.若5小时处理完污水,则需同时开动的机组数为( )
A.6台 B.7台 C.8台 D.9台
4、下列各方程中,是二元一次方程的是( )
A.=y+5x B.3x+1=2xy C.x=y2+1 D.x+y=1
5、用代入消元法解关于、的方程组时,代入正确的是( )
A. B.
C. D.
6、已知是方程x﹣ay=3的一个解,那么a的值为( )
A.﹣1 B.1 C.﹣3 D.3
7、用加减法将方程组中的未知数x消去后,得到的方程是( ).
A.2y=6 B.8y=16 C.﹣2y=6 D.﹣8y=16
8、下列方程组中,属于二元一次方程组的是( )
A. B.
C. D.
9、观察下列方程其中是二元一次方程是( )
A.5x﹣y=35 B.xy=16
C.2x2﹣1=0 D.3z﹣2(z+1)=6
10、已知x=2,y=﹣1是方程ax+y=3的一组解,则a的值为( )
A.2 B.1 C.﹣1 D.﹣2
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、若关于x,y的二元一次方程组无解,则______.
2、如图,5个大小形状完全相同的长方形纸片,在直角坐标系中摆成如图图案,己知点,则点A的坐标是__________.
3、一个两位数,个位数字和十位数字的和是13,如果将个位数字和十位数字对调后得到的新数比原数大27,则原来的两位数是_________.
4、如果将方程变形为用含的式子表示,那么_______.
5、已知等式(2A﹣7B)x+(3A﹣8B)=8x+10,对一切实数x都成立,则A+B=_____.
三、解答题(5小题,每小题10分,共计50分)
1、已知方程(k+2)x+(k-6)y=k+8是关于x,y的方程.
(1)k为何值时,方程为一元一次方程?
(2)k为何值时,方程为二元一次方程?
2、解方程组:.
3、解方程组:
(1);
(2).
4、解方程组:.
5、解方程组:
-参考答案-
一、单选题
1、A
【解析】
【分析】
含有两个未知数,且含未知数的项的最高次数是1,这样的整式方程是二元一次方程,根据定义逐一分析即可.
【详解】
解:①x+y=6是二元一次方程;
②x(x+y)=2,即不是二元一次方程;
③3x-y=z+1是三元一次方程;
④m+=7不是二元一次方程;
故符合题意的有:①,
故选A
【点睛】
本题考查的是二元一次方程的定义,掌握定义,根据定义判断方程是否是二元一次方程是解本题的关键.
2、B
【解析】
【分析】
根据二元一次方程组的解法以及非负数的性质即可求出答案.
【详解】
解:由题意可知:
解得: ,
故选:B.
【点睛】
本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.
3、B
【解析】
【分析】
设同时开动x台机组,每台机组每小时处理a吨污水,根据“如果同时开动2台机组要30小时刚好处理完污水,同时开动3台机组要15小时刚好处理完污水”,即可得出关于m,n的二元一次方程组,解之即可得出m,n的值(用含a的代数式表示),再由5小时内将污水处理完毕,即可得出关于关于x的一元一次方程,解之可得出结论.
【详解】
解:设同时开动x台机组,每台机组每小时处理a吨污水,
依题意,得,
解得:,
∵5ax=30a+5a,
∴x=7.
答:要同时开动7台机组.
故选:B.
【点睛】
本题考查的是用二元一次方程组来解决实际问题,正确的理解题意是解题的关键.
4、D
【解析】
【分析】
根据二元一次方程的定义逐一排除即可.
【详解】
解:A、=y+5x不是二元一次方程,因为不是整式方程;
B、3x+1=2xy不是二元一次方程,因为未知数的最高项的次数为2;
C、x=y2+1不是二元一次方程,因为未知数的最高项的次数为2;
D、x+y=1是二元一次方程.
故选:D.
【点睛】
此题主要考查了二元一次方程定义关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.
5、A
【解析】
【分析】
利用代入消元法把①代入②,即可求解.
【详解】
解:,
把①代入②,得:.
故选:A
【点睛】
本题主要考查了解二元一次方程组,解题的关键是熟练掌握二元一次方程组数为解法——代入消元法和加减消元法.
6、A
【解析】
【分析】
将代入方程x-ay=3计算可求解a值.
【详解】
解:将代入方程x-ay=3得2-a=3,
解得a=-1,
故选:A.
【点睛】
本题主要考查二元一次方程的解,理解二元一次方程解的概念是解题的关键.
7、D
【解析】
【分析】
根据二元一次方程组的加减消元法可直接进行求解.
【详解】
解:用加减法将方程组中的未知数x消去,则有①-②得:﹣8y=16;
故选D.
【点睛】
本题主要考查二元一次方程组的求解,熟练掌握二元一次方程组的求解是解题关键.
8、C
【解析】
【分析】
根据二元一次方程组的基本形式及特点进行判断,即:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.
【详解】
解:、该方程组中含有3个未知数,不是二元一次方程组,故本选项不符合题意
、该方程组中的第一个方程的最高次数为2,不是二元一次方程组,故本选项不符合题意;
、该方程组符合二元一次方程组的定义,故本选项符合题意;
、该方程组中的第二个方程的最高次数为2,不是二元一次方程组,故本选项不符合题意;
故选:.
【点睛】
本题主要考查二元一次方程组的判定,解题的关键是熟练掌握二元一次方程组的基本形式及特点.
9、A
【解析】
【分析】
根据二元一次方程的定义解答即可.
【详解】
解:A、该方程符合二元一次方程的定义,符合题意.
B、该方程是二元二次方程,不符合题意.
C、该方程是一元二次方程,不符合题意.
D、该方程是一元一次方程,不符合题意.
故选:A.
【点睛】
本题主要考查了二元一次方程的定义,含有两个未知数且每个未知数的次数均为1的方程是二元一次方程.
10、A
【解析】
【分析】
把x=2,y=﹣1代入方程ax+y=3中,得到2a-1=3,解方程即可.
【详解】
∵x=2,y=﹣1是方程ax+y=3的一组解,
∴2a-1=3,
解得a=2,
故选A.
【点睛】
本题考查了二元一次方程的解即使方程两边相等的一组未知数的值,一元一次方程的解法,正确理解定义,规范解一元一次方程是解题的关键.
二、填空题
1、−
【解析】
【分析】
根据加减消元法消去y,得到x,因为方程组无解,所以令分母等于0,使这个解无意义,则原方程组无解.
【详解】
解:,
①×2得:2mx+6y=18③,
②×3得:3x−6y=3④,
③+④得:(2m+3)x=21,
∴x=,
∵方程组无解,
∴2m+3=0,
∴m=−.
故答案为:−.
【点睛】
本题考查了二元一次方程组的解,解题的关键是利用消元法求得x的值.
2、(-3,9)
【解析】
【分析】
设长方形纸片的长为x,宽为y,根据点B的坐标,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再结合点A的位置,即可得出点A的坐标.
【详解】
解:设长方形纸片的长为x,宽为y,
依题意,得:,
解得:,
∴x-y=3,x+2y=9,
∴点A的坐标为(-3,6).
故答案为:(-3,9).
【点睛】
本题考查了二元一次方程组的应用以及坐标与图形性质,找准等量关系,正确列出二元一次方程组是解题的关键.
3、58
【解析】
【分析】
设原来的两位数的十位数字为x,个位数字为y,根据“个位数字和十位数字的和是13,如果将个位数字和十位数字对调后得到的新数比原数大27”,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入(10x+y)中即可求出结论.
【详解】
解:设原来的两位数的十位数字为x,个位数字为y,
依题意得:,
解得:,
∴10x+y=58.
故答案为:58.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
4、
【解析】
【分析】
先移项,再系数化为1即可.
【详解】
解:移项,得:,
方程两边同时除以,得:,
故答案为:.
【点睛】
本题考查了解二元一次方程,将x看作常数,把y看做未知数,灵活应用等式的性质求解是关键.
5、##0.4
【解析】
【分析】
根据关键语“等式(2A﹣7B)x+(3A﹣8B)=8x+10对一切实数x都成立”,只要让等式两边x的系数和常数分别相等即可列出方程组求解.
【详解】
解:(2A﹣7B)x+(3A﹣8B)=8x+10,
∴,
解得:,
则A+B=,
故答案为:.
【点睛】
本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.
三、解答题
1、 (1)k=-2或k=6;
(2)k≠-2且k≠6时
【解析】
【分析】
(1)根据一元次方程的定义,含有一个未知数,并且含未知数的项的次数为1的整式方程可得或 ,解方程组得;
(2)根据方程是二元一次方程方程的定义含有两个未知数,含未知数的项的次数为1的整式方程可得,解不等式组即可.
【小题1】
解:∵方程是一元一次方程,
∴或
∴解得k=-2或k=6.
∴当k=-2或k=6时,该方程是一元一次方程.
【小题2】
解:∵方程是二元一次方程,
∴
∴解得k≠-2且k≠6.
∴当k≠-2且k≠6时,该方程是二元一次方程.
【点睛】
本题考查一元一次方程的定义,二元一次方程方程的定义,掌握一元一次方程的定义,二元一次方程方程的定义是解题关键.
2、
【解析】
【分析】
直接利用加减消元法解方程组求解即可;
【详解】
解:,
①+②×2,得7x=10,
解得:x=,
把x=代入②,得+y=2,
解得:y=,
所以方程组的解是.
【点睛】
此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
3、 (1)
(2)
【解析】
【分析】
(1)②﹣①得出4y=12,求出y,再把y=3代入②求出x即可;
(2)整理后①+②得出6x=12,求出x,再把x=2代入①求出y即可.
(1)
,
②﹣①,得4y=12,
解得:y=3,
把y=3代入②,得x+3=15,
解得:x=12,
所以方程组的解是;
(2)
,
原方程组化为:,
①+②,得6x=12,
解得:x=2,
把x=2代入①,得6+2y=4,
解得:y=﹣1,
所以方程组的解是.
【点睛】
本题考查解二元一次方程组,解题的关键是消元,常用消元的方法有代入消元法和加减消元法.
4、
【解析】
【详解】
解:,
用②①,得:,
解得:,
将代入①,得:,
解得:,
方程组的解为.
【点睛】
此题考查了解二元一次方程组,正确掌握解方程组的方法:代入法和加减法并应用解决问题是解题的关键.
5、
【解析】
【分析】
消元求解的值,代回式解的值即可.
【详解】
解:得
解得:
将代入式得
解得:
∴方程组的解为.
【点睛】
本题考查了一元二次方程组.解题的关键在于正确的减法消元求解.
初中数学冀教版七年级下册第六章 二元一次方程组综合与测试课时训练: 这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试课时训练,共18页。试卷主要包含了下列方程组中,二元一次方程组有等内容,欢迎下载使用。
初中数学冀教版七年级下册第六章 二元一次方程组综合与测试同步练习题: 这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试同步练习题,共20页。试卷主要包含了已知,则,若是方程组的解,则的值为等内容,欢迎下载使用。
冀教版七年级下册第六章 二元一次方程组综合与测试课时练习: 这是一份冀教版七年级下册第六章 二元一次方程组综合与测试课时练习,共19页。试卷主要包含了有下列方程组,《孙子算经》记载等内容,欢迎下载使用。