冀教版七年级下册第六章 二元一次方程组综合与测试课后作业题
展开冀教版七年级下册第六章二元一次方程组综合练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、方程组 消去x得到的方程是( )
A.y=4 B.y=-14 C.7y=14 D.-7y=14
2、在某场CBA比赛中,某位运动员的技术统计如下表所示:
技术 | 上场时间(分钟) | 出手投篮(次) | 投中(次) | 罚球得分(分) | 篮板(个) | 防攻(次) | 个人总得分(分) |
数据 | 38 | 27 | 11 | 6 | 3 | 4 | 33 |
注:①表中出手投篮次数和投中次数均不包括罚球;
②总得分=两分球得分+三分球得分+罚球得分.
根据以上信息,本场比赛中该运动员投中两分球和三分球各( )个.
A.5,6 B.6,5 C.4,7 D.7,4
3、下列方程组中,属于二元一次方程组的是( )
A. B.
C. D.
4、李老师为学习进步的学生购买奖品,共用去42元购买单价为6元的和单价为12元的两种笔记本(购买本数均为正整数).你认为购买方案共有( )种.A.2 B.3 C.4 D.5
5、《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50.问:甲,乙两人各带了多少钱?设甲,乙两人持钱的数量分别为x,y,则可列方程组为( )
A. B.
C. D.
6、若关于x、y的二元一次方程的解,也是方程的解,则m的值为( )
A.-3 B.-2 C.2 D.无法计算
7、下列方程是二元一次方程的是( )
A.x﹣xy=1 B.x2﹣y﹣2x=1 C.3x﹣y=1 D.﹣2y=1
8、下列方程中,是二元一次方程组的是( )
A. B. C. D.
9、根据大马和小马的对话求大马和小马各驮了几包货物.
大马说:“把我驮的东西给你1包多好哇!这样咱俩驮的包数就一样多了.”
小马说:“我还想给你1包呢!”
大马说:“那可不行!如果你给我1包,我驮的包数就是你的2倍了.”
小明将这个实际问题转化为二元一次方程组问题.设未知数x,y,已经列出一个方程x﹣1=y+1,则另一个方程应是( )
A.x+1=2y B.x+1=2(y﹣1)
C.x﹣1=2(y﹣1) D.y=1﹣2x
10、已知是方程x﹣ay=3的一个解,那么a的值为( )
A.﹣1 B.1 C.﹣3 D.3
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、
2、用二元一次方程组解决实际问题的步骤:
(1)___________:弄清题意和题目中的数量关系;
(2)___________:用字母表示题目中的未知数;
(3)___________:根据两个等量关系列出方程组;
(4)___________:利用代入消元法或加减消元法解出未知数的值;
(5)___________:检验所求的解是否符合实际意义,然后作答.
3、加减消元法:当二元一次方程的两个方程中,同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,从而求得方程组的解,这种解方程组的方法叫做_______,简称_______.
加减消元法的条件:同一未知数的系数_______或_______.
4、定义新运算:规定※,若3※,2※,则※※__.
5、已知,则的值是__.
三、解答题(5小题,每小题10分,共计50分)
1、对于任意一个四位正整数m,若满足百位数字比千位数字大1,个位数字比十位数字大1,且各个数位上的数字不为零,我们就把这个数叫作“虎虎生威数”,将“虎虎生威数”m的千位、个位上的数字交换位置,百位、十位上的数字也交换位置,得到一个新的数,记.
(1)最小的虎虎生威数是______;______;
(2)已知p,q都是虎虎生威数,其中,(,:且均为整数),若,且满足是11的倍数,求p、q的值.
2、解方程组:
3、以“花开中国梦”为主题的第十届中国花卉博览会于2021年5月21日至7月2日在上海市崇明区东平国家森林公园举办,本届花博会的门票分为平日票、指定日票等种类,其中平日票每张120元,指定日票每张180元,小明计划用2100元购买平日票和指定日票共15张.
(1)求小明计划购买平日票和指定日票各几张?
(2)为了鼓励大家提前购买,主办方决定,凡是在5月21日前购票的,平日票和指定日票都可以享受低于原价的预售价.小明决定按照预售价提前购票,在购票时小明发现:如果不改变原计划购买的门票种类及相应的张数,总金额可以节约300元;如果不改变原计划购票的总金额,那么可以购买5张平日票和10张指定日票,求平日票和指定日票的预售价分别是多少元?
4、甲仓库存粮比乙仓库存粮少5吨,现从甲仓库运出存粮30吨,从乙仓库运出存粮的40%,这时乙仓库所余粮食是甲仓库所余粮食的2倍,问甲、乙两仓库原各存粮多少吨?
5、用适当的方法解下列方程组.
-参考答案-
一、单选题
1、D
【解析】
【分析】
直接利用两式相减进而得出消去x后得到的方程.
【详解】
解:
①-②得:
-7y=14.
故答案为:-7y=14,
故选:D.
【点睛】
此题主要考查了解二元一次方程组,正确掌握加减运算法则是解题关键.
2、B
【解析】
【分析】
设本场比赛中该运动员投中两分球x个,三分球y个,根据投中次数结合总分,即可得出关于x、y的二元一次方程组,解之即可得出结论.
【详解】
解:设本场比赛中该运动员投中两分球x个,三分球y个,
根据题意得:,
解得:.
答:设本场比赛中该运动员投中两分球6个,三分球5个.
故选:B.
【点睛】
本题考查统计表和了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.
3、C
【解析】
【分析】
根据二元一次方程组的基本形式及特点进行判断,即①含有两个二元一次方程,②方程都为整式方程,③未知数的最高次数都为一次.
【详解】
解:A、该方程组中的第二个方程的最高次数为2,不是二元一次方程组,故本选项不符合题意;
B、该方程组的第一个方程不是整式方程,不是二元一次方程组,故本选项不符合题意;
C、该方程组符合二元一次方程组的定义,故本选项符合题意;
D、该方程组中含有3个未知数,不是二元一次方程组,故本选项不符合题意;
故选:C.
【点睛】
本题主要考查二元一次方程组的判定,解题的关键是熟练掌握二元一次方程组的基本形式及特点.
4、B
【解析】
【分析】
设购买笔记本本,购买笔记本本,先建立二元一次方程,再根据均为正整数进行分析即可得.
【详解】
解:设购买笔记本本,购买笔记本本,
由题意得:,即,
因为均为正整数,
所以有以下三种购买方案:
①当,时,,
②当,时,,
③当,时,,
故选:B.
【点睛】
本题考查了二元一次方程的应用,正确建立方程是解题关键.
5、B
【解析】
【分析】
设甲持钱x,乙持钱y,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的=50,据此列方程组可得.
【详解】
解:设甲持钱x,乙持钱y,
根据题意,得:,
故选:B.
【点睛】
本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.
6、C
【解析】
【分析】
将m看作已知数值,利用加减消元法求出方程组的解,然后代入求解即可得.
【详解】
解:,
得:,
解得:,
将代入①可得:,
解得:,
∴方程组的解为:,
∵方程组的解也是方程的解,
代入可得,
解得,
故选:C.
【点睛】
题目主要考查解二元一次方程组求参数,熟练掌握解二元一次方程组的方法是解题关键.
7、C
【解析】
【分析】
根据二元一次方程的定义逐个判断即可.含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.
【详解】
解:A、x﹣xy=1含有两个未知数,但未知数的最高次数是2次,
∴x﹣xy=1不是二元一次方程;
B、x2﹣y﹣2x=1含有两个未知数.未知数的最高次数是2次,
∴x2﹣y﹣2x=1不是二元一次方程;
C、3x﹣y=1含有两个未知数,未知数的最大次数是1次,
∴3x﹣y=1是二元一次方程;
D、﹣2y=1含有两个未知数,但分母上含有未知数,不是整式方程,
∴﹣2y=1不是二元一次方程.
故选:C.
【点睛】
此题主要考查了二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.
8、B
【解析】
【分析】
根据二元一次方程组的定义解答.
【详解】
解:A中含有两个未知数,含未知数的项的最高次数为2,故不符合定义;
B符合定义,故是二元一次方程组;
C中含有分式,故不符合定义;
D含有三个未知数,故不符合定义;
故选:B.
【点睛】
此题考查了二元一次方程组定义:含有两个未知数,且含有未知数的项的最高次数为2的整式方程是二元一次方程组,熟记定义是解题的关键.
9、B
【解析】
【分析】
设大马驮x袋,小马驮y袋.本题中的等量关系是:2×(小马驮的﹣1袋)=大马驮的+1袋;大马驮的﹣1袋=小马驮的+1袋,据此可列方程组求解.
【详解】
解:设大马驮x袋,小马驮y袋.
根据题意,得.
故选:B.
【点睛】
此题考查了二元一次方程组应用题,解题的关键是正确分析题目中的等量关系.
10、A
【解析】
【分析】
将代入方程x-ay=3计算可求解a值.
【详解】
解:将代入方程x-ay=3得2-a=3,
解得a=-1,
故选:A.
【点睛】
本题主要考查二元一次方程的解,理解二元一次方程解的概念是解题的关键.
二、填空题
1、2
【解析】
【分析】
将代入二元一次方程可得一个关于的方程,解方程即可得.
【详解】
解:由题意,将代入方程得:,
解得,
2、 审题 设元 列方程组 解方程组 检验并答
【解析】
略
3、 加减消元法 加减法 相等 互为相反数
【解析】
略
4、16
【解析】
【分析】
先根据3※,2※列方程组求出m和n的值,然后再计算※※2即可.
【详解】
解:※,2※,
,
解得:,
∴※,
※,
※※※,
故答案为:16.
【点睛】
本题考查了新定义,解二元一次方程组,以及有理数的混合运算,根据题意求出m和n的值是解答本题的关键.
5、2
【解析】
【分析】
由题意根据绝对值和偶次方的非负性得出方程组,求出方程组的解即可.
【详解】
解:,
,,
即,
①②,得,解得,
把代入①,得,解得,
,
.
故答案为:2.
【点睛】
本题考查绝对值,偶次方,二次一元方程组的应用,解题的关键是能求出方程组的解.
三、解答题
1、 (1)1212,4
(2),
【解析】
【分析】
(1)根据“虎虎生威数”的定义和进行计算求解即可;
(2)根据求出和,再根据是11的倍数,求出q的值,根据求出p的值即可.
(1)
解:根据“虎虎生威数”的定义可知千位上的数最小为1,则百位上的数为2,十位上的数最小为1,则个位上的数为2,最小的虎虎生威数是1212;
;
故答案为:1212,4.
(2)
解:∵p,q都是虎虎生威数,,
∴,,
;
同理;
∵是11的倍数,,
∴,
;
∵,
∴,即,
∵,
∴,
.
【点睛】
本题考查了新定义和二元一次方程,解题关键是准确理解题意,列出二元一次方程求解.
2、
【解析】
【分析】
消元求解的值,代回式解的值即可.
【详解】
解:得
解得:
将代入式得
解得:
∴方程组的解为.
【点睛】
本题考查了一元二次方程组.解题的关键在于正确的减法消元求解.
3、 (1)小明计划购买平日票为10张,指定日票为5张
(2)平日票的预售价为100元,指定日票的预售价为160元
【解析】
【分析】
(1)设小明计划购买平日票为张,指定日票为张,由题意:平日票每张120元,指定日票每张180元,小明计划用2100元购买平日票和指定日票共15张.列出方程组,解方程组即可;
(2)设平日票的预售价为元,指定日票的预售价为元,由题意:不改变原计划购买的门票种类及相应的张数,总金额可以节约300元;不改变原计划购票的总金额,那么可以购买5张平日票和10张指定日票,列出方程组,解方程组即可.
(1)
解:设小明计划购买平日票为张,指定日票为张,
由题意得:,
解得:,
答:小明计划购买平日票为10张,指定日票为5张;
(2)
解:设平日票的预售价为元,指定日票的预售价为元,
由题意得:,
解得:,
答:平日票的预售价为100元,指定日票的预售价为160元.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,解题的关键是正确列出二元一次方程组.
4、甲仓库原来存粮45吨,乙仓库原来存粮50吨
【解析】
【分析】
设甲仓库原来存粮吨,乙仓库原来存粮吨,由题意:甲仓库存粮比乙仓库存粮少5吨,从甲仓库运出存粮30吨,从乙仓库运出存粮的,这时乙仓库所余粮食是甲仓库所余粮食的2倍,列出方程组,解方程组即可.
【详解】
解:设甲仓库原来存粮吨,乙仓库原来存粮吨,
由题意得:,
解得:,
答:甲仓库原来存粮45吨,乙仓库原来存粮50吨.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,解题的关键是正确列出二元一次方程组.
5、
【解析】
【分析】
将代入消元求解的值,进而求出的值.
【详解】
解:
由①得,③
将③代入②得,
解得
把代入③,得
∴方程组的解为.
【点睛】
本题考查了解二元一次方程组.解题的关键在于将二元一次方程组转化成一元一次方程.
初中冀教版第六章 二元一次方程组综合与测试课时作业: 这是一份初中冀教版第六章 二元一次方程组综合与测试课时作业,共18页。试卷主要包含了方程组 消去x得到的方程是等内容,欢迎下载使用。
初中数学冀教版七年级下册第六章 二元一次方程组综合与测试练习: 这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试练习,共19页。试卷主要包含了二元一次方程的解可以是,若方程组的解为,则方程组的解为等内容,欢迎下载使用。
初中数学冀教版七年级下册第六章 二元一次方程组综合与测试同步训练题: 这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试同步训练题,共20页。试卷主要包含了已知a,b满足方程组则的值为,下列方程是二元一次方程的是,《九章算术》中记载,如图,9个大小等内容,欢迎下载使用。