初中数学冀教版七年级下册第六章 二元一次方程组综合与测试同步训练题
展开冀教版七年级下册第六章二元一次方程组综合练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、某学校体育有场的环形跑道长,甲、乙分别以一定的速度练习长跑和骑自行车.同时同地出发,如果反向而行,那么他们每隔相遇一次.如果同向而行,那么每隔乙就追上甲一次,设甲的速度为,乙的速度为,则可列方程组为( )
A. B.
C. D.
2、现有一批脐橙运往外地销售,A型车载满一次可运3吨,B型车载满一次可运4吨,现有脐橙31吨,计划同时租用A,B两种车型,一次运完且恰好每辆车都载满脐橙,租车方案共有( )
A.2种 B.3种 C.4种 D.5种
3、m为正整数,已知二元一次方程组有整数解则m2=( )
A.4 B.1或4或16或25
C.64 D.4或16或64
4、已知a,b满足方程组则的值为( )
A. B.4 C. D.2
5、小明解方程组的解为,由于不小滴下了两滴墨水,刚好把两个数■和★遮住了,则这两个数和■和★的值为( )
A.■=8和★=3 B.■=8和★=5 C.■=5和★=3 D.■=3和★=8
6、下列方程是二元一次方程的是( )
A.x﹣xy=1 B.x2﹣y﹣2x=1 C.3x﹣y=1 D.﹣2y=1
7、《九章算术》中记载:“今有共买牛,人出六,不足四十;人出八,余四;问人数、牛价各几何?”其大意是:今有人合伙买牛,若每人出6钱,还差40钱;若每人出8钱,多余4钱,问合伙人数、牛价各是多少?设合伙人数为人,牛价为 钱,根据题意,可列方程组为( )
A. B. C. D.
8、如图,9个大小、形状完全相同的小长方形,组成了一个周长为46的大长方形,若设小长方形的长为,宽为,则可列方程为( )
A. B.
C. D.
9、若xa﹣b﹣2ya+b﹣2=0是二元一次方程,则a,b的值分别是( )
A.1,0 B.0,﹣1 C.2,1 D.2,﹣3
10、己知是关于,的二元一次方程的解,则的值是( )
A.3 B. C.2 D.
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、一个两位数,个位数字和十位数字的和是13,如果将个位数字和十位数字对调后得到的新数比原数大27,则原来的两位数是_________.
2、含有两个未知数,并且所含未知数的项的次数都是1的方程,叫做____.
判断一个方程是否为二元一次方程:
(1)二元一次方程的条件:①____方程;②只含____个未知数;③两个未知数系数都不为____;④含有未知数的项的次数都是____.
(2)二元一次方程的一般形式:ax+by=c(a≠0,b≠0).
3、已知关于x,y的二元一次方程组的解x,y互为相反数,则a的值为______.
4、火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食,外卖,摆摊三种方式的营业额之比为3:5:2,随着促销消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的,则摆摊营业额将达到7月份总营业额的,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是_____.
5、通过“___________”或“___________”进行消元,把“三元”转化为“___________ ”,使解三元一次方程组转化为解___________,进而再转化为解___________.
三、解答题(5小题,每小题10分,共计50分)
1、解方程组: .
2、2021年是中国历史上的超级航天年,渝飞航模专卖店看准商机,8月初推出了“天问一号”和“嫦娥五号”两款模型.每个“天问一号”模型的售价是90元,每个“嫦娥五号”模型的售价是100元.
(1)若8月份销售“天问一号”模型的数量比“嫦娥五号”模型数量多200个,销售两种模型的总销售额为56000元,求销售“天问一号”模型和“嫦娥五号”模型的数量各是多少?
(2)该店决定从9月1日起推出“逐梦航天、仰望星空”优惠活动,9月份,每个“天问一号”模型的售价与8月份相同,销量比8月份增加a%;每个“嫦娥五号”模型的售价在8月份的基础上降价a%,销量比8月份增加a%.
①用含有a的代数式填表(不需化简):
| 9月份的售价(元) | 9月份销量 |
“天问一号”模型 | 90 |
|
“嫦娥五号”模型 |
|
|
②据统计,该店在9月份的销售总额比8月份的销售总额增加a%,求a的值.
3、已知xm-n+1y与-2xn-1y3m-2n-5是同类项,求m和n的值.
4、对于任意一个四位正整数m,若满足百位数字比千位数字大1,个位数字比十位数字大1,且各个数位上的数字不为零,我们就把这个数叫作“虎虎生威数”,将“虎虎生威数”m的千位、个位上的数字交换位置,百位、十位上的数字也交换位置,得到一个新的数,记.
(1)最小的虎虎生威数是______;______;
(2)已知p,q都是虎虎生威数,其中,(,:且均为整数),若,且满足是11的倍数,求p、q的值.
5、下面是学习二元一次方程组时,老师提出的问题和两名同学所列的方程.
问题:某个工人一天工作6个小时,可以生产零件一整箱和不足一箱的20个;由于特殊情况,今天他只工作4个小时,生产零件一整箱和不足一箱的4个,问这一箱零件和该工人每小时能生产的零件数分别是多少?
小明所列方程: 小亮所列方程:
根据以上信息,解答下列问题.
(1)以上两个方程(组)中意义是否相同?______(填“是”或“否”);
(2)小亮的方程所用等量关系______(填序号,“①每个小时生产的零件数”或“②4个小时生产的零件数相等”);
(3)从以上两个方程(组)中任选一个求解,完整解答老师提出的问题.
-参考答案-
一、单选题
1、A
【解析】
【分析】
此题中的等量关系有:①反向而行,则两人20秒共走250米;②同向而行,则50秒乙比甲多跑250米.
【详解】
解:①根据反向而行,得方程为30(x+y)=400;
②根据同向而行,得方程为80(y-x)=400.
那么列方程组,
故选:A.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,注意追及问题和相遇问题不同的求解方法是解题的关键.
2、B
【解析】
【分析】
设租A型车x辆,租B型车y辆,根据题意列方程得,正整数解即可.
【详解】
解:设租A型车x辆,租B型车y辆,
根据题意列方程得,
∴,
∵均为正整数,
∴是4的倍数,小于31的4的倍数有28,24,20,16,12,8,4,
∴=28,解得x=1,,
∴=24,解得,,
∴=20,解得,
∴=16,解得x=5,,
∴=12,解得,
∴=8,解得,
∴=4,解得x=9,,
∴租车方案有三种分别为:租A型车1辆,租B型车7辆或租A型车5辆,租B型车4辆或租A型车9辆,租B型车1辆.
故选择B.
【点睛】
本题考查二元一次方程的正整数解,掌握应用二元一次方程解应用题,利用二元一次方程的正整数解解决方案设计问题是解题关键.
3、D
【解析】
【分析】
把m看作已知数表示出方程组的解,由方程组的解为整数解确定出m的值,代入原式计算即可求出值.
【详解】
解:,
①-②得:(m-3)x=10,
解得:x=,
把x=代入②得:y=,
由方程组为整数解,得到m-3=±1,m-3=±5,
解得:m=4,2,-2,8,
由m为正整数,得到m=4,2,8
则=4或16或64,
故选:D.
【点睛】
此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.
4、A
【解析】
【分析】
求出方程组的解得到a与b的值,即可确定出-a-b的值.
【详解】
解:,
①+②×5得:16a=32,即a=2,
把a=2代入①得:b=2,
则-a-b=-4,
故选:A.
【点睛】
此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
5、A
【解析】
【分析】
把代入求出;再把代入求出数■即可.
【详解】
解:把代入得,,解得,;
把代入得,,解得,;
故选A
【点睛】
本题考查了二元一次方程组的解法,解题关键是明确方程组解的意义,代入方程准确进行计算.
6、C
【解析】
【分析】
根据二元一次方程的定义逐个判断即可.含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.
【详解】
解:A、x﹣xy=1含有两个未知数,但未知数的最高次数是2次,
∴x﹣xy=1不是二元一次方程;
B、x2﹣y﹣2x=1含有两个未知数.未知数的最高次数是2次,
∴x2﹣y﹣2x=1不是二元一次方程;
C、3x﹣y=1含有两个未知数,未知数的最大次数是1次,
∴3x﹣y=1是二元一次方程;
D、﹣2y=1含有两个未知数,但分母上含有未知数,不是整式方程,
∴﹣2y=1不是二元一次方程.
故选:C.
【点睛】
此题主要考查了二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.
7、B
【解析】
【分析】
设合伙人数为人,牛价为 钱,根据“若每人出6钱,还差40钱;若每人出8钱,多余4钱,”列出方程组,即可求解.
【详解】
解:设合伙人数为人,牛价为 钱,根据题意得:
.
故选:B
【点睛】
本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.
8、A
【解析】
【分析】
根据图形可知,大长方形的长=7个小长方形的宽=2小长方形的长,大长方形的宽=小长方形的长+小长方形的宽,由此即可列出方程.
【详解】
解:设小长方形的长为x,宽为y,
由题意得: 或,
故选A.
【点睛】
本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够正确理解题意和掌握长方形周长公式.
9、C
【解析】
【分析】
根据二元一次方程的定义,可得到关于a,b的方程组,解出即可求解.
【详解】
解:∵xa﹣b﹣2ya+b﹣2=0是二元一次方程,
∴ ,
解得:.
故选:C
【点睛】
本题主要考查了二元一次方程的定义和解二元一次方程组,熟练掌握相关知识点是解题的关键.
10、A
【解析】
【分析】
将代入关于x,y的二元一次方程2x-y=27得到关于k的方程,解这个方程即可得到k的值.
【详解】
解:将代入关于x,y的二元一次方程2x-y=27得:
2×3k-(-3k)=27.
∴k=3.
故选:A.
【点睛】
本题主要考查了二元一次方程的解和解一元一次方程,将方程的解代入原方程是解题的关键.
二、填空题
1、58
【解析】
【分析】
设原来的两位数的十位数字为x,个位数字为y,根据“个位数字和十位数字的和是13,如果将个位数字和十位数字对调后得到的新数比原数大27”,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入(10x+y)中即可求出结论.
【详解】
解:设原来的两位数的十位数字为x,个位数字为y,
依题意得:,
解得:,
∴10x+y=58.
故答案为:58.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
2、 二元一次方程 整式 两 0 1
【解析】
略
3、-3
【解析】
【分析】
两个方程相加得出3x+3y=3a+9,根据已知条件x,y互为相反数知x+y=0,得出关于a的方程,解方程即可.
【详解】
解:两个方程相加得:3x+3y=3a+9,
∵x、y互为相反数,
∴x+y=0,
∴3x+3y=0,
∴3a+9=0,
解得:a=-3,
故答案为:-3.
【点睛】
本题考查了二元一次方程组的解、互为相反数的性质;根据题意得出关于a的方程是解决问题的关键.
4、故答案为:
【点睛】
本题考查了二元一次方程的解、解一元一次方程,掌握理解二元一次方程的解的概念(一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解)是解题关键.
2.1:8
【解析】
【分析】
设6月份堂食、外卖,摆摊三种方式的营业额为3a,5a,2a,设7月份总的增加营业额为5x,摆摊增加的营业额为2x,7月份总营业额20b,摆摊7月份的营业额为7b,堂食7月份的营业额为8b,外卖7月份的营业额为5b,根据题意,列出方程组,即可.
【详解】
设6月份堂食、外卖,摆摊三种方式的营业额为3a,5a,2a,设7月份总的增加营业额为5x,摆摊增加的营业额为2x,7月份总营业额20b,摆摊7月份的营业额为7b,堂食7月份的营业额为8b,外卖7月份的营业额为5b,
由题意可得:,
解得:
∴7月份外卖还需增加的营业额与7月份总营业额之比=(5b﹣5a):20b=1:8,
故答案为:1:8.
【点睛】
本题主要考查三元一次方程组的实际应用,准确找出等量关系,列出方程组是解题的关键.
5、 代入 加减 二元 二元一次方程组 一元一次方程
【解析】
略
三、解答题
1、
【解析】
【分析】
由②①,得:④,由③②,得:⑤,再由由⑤④,得:,再将代入④,可得,然后将,代入①,可得,即可求解.
【详解】
解: ,
由②①,得:④,
由③②,得:⑤,
由⑤④,得:,
解得:,
将代入④,得:,
解得:,
将,代入①,得: ,
解得:
方程组的解为:.
【点睛】
本题主要考查了解三元一次方程组,熟练掌握三元一次方程组的解法是解题的关键.
2、 (1)销售天问一号模型和嫦娥五号模型的数量各是400个与200个
(2)①100(1- a%);400(1+a%);200(1+a%);②10
【解析】
【分析】
(1)首先设销售“天问一号”模型和“嫦娥五号”模型的数量各x个,y个,根据销售“天问一号”模型的数量比“嫦娥五号”模型数量多200个可列出方程,由销售两种模型的总销售额为56000元可列出方程,把这两个方程组成一个二元一次方程组,解这个方程组即可得到本题答案;
(2)①由9月份,每个“天问一号”模型的售价与8月份相同,销量比8月份增加a%,可得9月份“天问一号”模型的销量为400(1+a%)个;“嫦娥五号”模型的售价在8月份的基础上降价a%,,销量比8月份增加a%,可得“嫦娥五号”模型的销量为200(1+a%)个,可得“嫦娥五号”模型的售价为100(1- a%);②根据该店在9月份的销售总额比8月份的销售总额增加a%,可得90×400(1+a%)+100(1﹣a%)×200(1+a%)=(90×400+100×200)(1+a%),计算即可得出a的值.
(1)
解:设销售“天问一号”模型和“嫦娥五号”模型的数量各x个,y个,根据题得:
解得:
答:销售“天问一号”模型和“嫦娥五号”模型的数量各是400个与200个。
(2)
解:①∵9月份,“嫦娥五号”模型的售价在8月份的基础上降价a% ,“天问一号”模型的销量比8月份增加a%,“嫦娥五号”模型的销量比8月份增加a%,
∴9月份,“天问一号”模型的销量为400(1+a%)个,“嫦娥五号”模型的销量为200(1+a%)个.
故答案为:100(1- a%);400(1+a%);200(1+a%).
②依题意得:90×400(1+a%)+100(1﹣a%)×200(1+a%)=(90×400+100×200)(1+a%),
整理得:3a2﹣30a=0,解得:a1=10,a2=0(不合题意,舍去).
答:a的值为10.
【点睛】
本题主要考查了二元一次方程组的应用,一元二次方程的应用等知识.
3、
【解析】
【详解】
解:因为xm-n+1y与-2xn-1y3m-2n-5是同类项,所以
,
整理,得:
④-③,得2m=8,所以m=4.
把m=4代入③,得2n=6,
所以n=3.
所以当时,xm-n+1y与-2xn-1y3m-2n-5是同类项。
4、 (1)1212,4
(2),
【解析】
【分析】
(1)根据“虎虎生威数”的定义和进行计算求解即可;
(2)根据求出和,再根据是11的倍数,求出q的值,根据求出p的值即可.
(1)
解:根据“虎虎生威数”的定义可知千位上的数最小为1,则百位上的数为2,十位上的数最小为1,则个位上的数为2,最小的虎虎生威数是1212;
;
故答案为:1212,4.
(2)
解:∵p,q都是虎虎生威数,,
∴,,
;
同理;
∵是11的倍数,,
∴,
;
∵,
∴,即,
∵,
∴,
.
【点睛】
本题考查了新定义和二元一次方程,解题关键是准确理解题意,列出二元一次方程求解.
5、 (1)是
(2)②
(3)这一箱零件和该工人每小时能生产的零件数分别是28个、8个.
【解析】
【分析】
(1)根据所列方程分别得到小明和小亮所列方程中x的意义即可得到答案;
(2)根据小亮所列方程的意义求解即可;
(3)利用解一元一次方程和解二元一次方程组的方法求解即可.
(1)
解:由小明所列方程的意义可知,小明方程中x表示的是这一箱零件的个数,而由小亮所列方程的意义可知,小亮方程中的x表示的是这一箱零件的个数,
∴以上两个方程(组)中x意义相同,
故答案为:是;
(2)
解:根据小亮所列方程的意义可知小亮的方程所用等量关系4个小时生产的零件数相等,
故答案为:②;
(3)
解:,
把①-②得:,解得,
把代入①得:,解得;
去分母得:,
去括号:,
移项得:,
合并得:,
系数化为1得:,
∴,
∴这一箱零件和该工人每小时能生产的零件数分别是28个、8个.
【点睛】
本题主要考查了一元一次方程和二元一次方程组的应用,正确理解所列方程的意义是解题的关键.
冀教版七年级下册第六章 二元一次方程组综合与测试课后测评: 这是一份冀教版七年级下册第六章 二元一次方程组综合与测试课后测评,共18页。试卷主要包含了已知关于x,若关于x等内容,欢迎下载使用。
冀教版七年级下册第六章 二元一次方程组综合与测试课后作业题: 这是一份冀教版七年级下册第六章 二元一次方程组综合与测试课后作业题,共17页。试卷主要包含了若关于x,下列方程是二元一次方程的是等内容,欢迎下载使用。
初中数学冀教版七年级下册第六章 二元一次方程组综合与测试同步达标检测题: 这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试同步达标检测题,共21页。试卷主要包含了有下列方程等内容,欢迎下载使用。