数学七年级下册第八章 整式乘法综合与测试当堂检测题
展开
这是一份数学七年级下册第八章 整式乘法综合与测试当堂检测题,共18页。试卷主要包含了下列计算正确的是,利用如图①所示的长为a,的计算结果是,计算的结果是等内容,欢迎下载使用。
冀教版七年级数学下册第八章整式的乘法同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、若三角形的底边为2n,高为2n﹣1,则此三角形的面积为( )A.4n2+2n B.4n2﹣1 C.2n2﹣n D.2n2﹣2n2、计算,正确结果是( )A. B. C. D.3、下列运算一定正确的是( )A. B.C. D.4、下列计算正确的是( )A. B.C. D.5、下列计算正确的是( )A. B. C. D.6、利用如图①所示的长为a、宽为b的长方形卡片4张,拼成了如图②所示的图形,则根据图②的面积关系能验证的等式为( )A. B.C. D.7、的计算结果是( )A. B. C. D.8、下列计算正确的是( )A.a4+a3=a7 B.a4•a3=a7 C.a4÷a3=1 D.(﹣2a3)4=8a129、计算的结果是( )A. B. C. D.10、2021年是中国共产党建党100周年,根据中央组织部最新党内统计数据显示,截至2021年6月5日,中国共产党党员总数为9514.8万名,数据9514.8万用科学记数法表示为( )A. B. C. D.第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、某中学要举行校庆活动,现计划在教学楼之间的广场上搭建舞台.已知广场中心有一座边长为的正方形的花坛.学生会提出两个方案:方案一:如图1,围绕花坛搭建外围为正方形的“回”字形舞台(阴影部分),舞台的面积记为;方案二:如图2,在花坛的三面搭建“凹”字形舞台(阴影部分),舞台的面积记为;具体数据如图所示,则______.(填“”,“”或“”)2、如图,将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF,若这两个正方形的边长满足a+b=10,ab=20,则阴影部分的面积为____.3、根据国家统计局的数据,2021年的第一季度,我国的国内生产总值接近250000亿元,增幅达到了18.3%.数据250000用科学记数法表示为____.4、若(2x+y﹣5)0=1无意义,且3x+2y=10,则x=_____,y=_____.5、用科学计数法表示:-5107000=___________.三、解答题(5小题,每小题10分,共计50分)1、计算:(1);(2).2、先化简,再求值:(x﹣1)(2x+1)﹣2(x﹣5)(x+2),其中x=﹣2.3、化简:(1)(2)4、计算:(1)(2).5、阅读材料一:可以展开成一个有规律的多项式:;;;;……阅读材料二:我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.下面我们依次对展开式的各项系数进一步研究发现,当取正整数时可以单独列成表中的形式:例如,在三角形中第二行的三个数1,2,1,恰好对应展开式中的系数,(1)结合两个材料,写出的展开式:(2)多项式的展开式是一个_____次_____项式?并预测第三项的系数是_____;(3)请你猜想多项式取正整数)的展开式的各项系数之和,并进行合理说明(结果用含字母的代数式表示);(4)利用材料中的规律计算:(不用材料中的规律计算不给分). -参考答案-一、单选题1、C【解析】【分析】根据三角形面积公式列式,然后利用单项式乘多项式的运算法则进行计算.【详解】解:三角形面积为×2n(2n−1)=2n2-n,故选:C.【点睛】本题考查单项式乘多项式的运算,理解三角形面积=×底×高,掌握单项式乘多项式的运算法则是解题关键.2、D【解析】【分析】根据单项式除以单项式的运算法则进行计算后即可确定正确的选项.【详解】解:原式=,故选:D.【点睛】本题考查了整式的除法,了解整式除法的运算法则是解答本题的关键,难度较小.3、D【解析】【分析】由同底数幂除法、合并同类项、幂的乘方、平方差公式,分别进行判断,即可得到答案.【详解】解:A、,故A错误;B、,不能合并,故B错误;C、,故C错误;D、,故D正确;故选:D.【点睛】本题考查了同底数幂除法、合并同类项、幂的乘方、平方差公式,解题的关键是掌握运算法则进行判断.4、D【解析】【分析】利用完全平方公式计算即可.【详解】解:A、原式=a2+2ab+b2,本选项错误;B、原式==-a2+2ab-b2,本选项错误;C、原式=a2−2ab+b2,本选项错误;D、原式=a2+2ab+b2,本选项正确,故选:D.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.5、B【解析】【分析】分别根据同底数幂的乘法法则,幂的乘方运算法则,积的乘方运算法则以及同底数幂的除法法则逐一判断即可.【详解】解:A、,原计算错误,该选项不符合题意;B、,正确,该选项符合题意;C、,原计算错误,该选项不符合题意;D、,原计算错误,该选项不符合题意;故选:B.【点睛】本题主要考查了同底数幂的乘除法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.6、A【解析】【分析】整个图形为一个正方形,找到边长,表示出面积;也可用1个小正方形的面积加上4个矩形的面积表示,然后让这两个面积相等即可.【详解】∵大正方形边长为:,面积为:;1个小正方形的面积加上4个矩形的面积和为:;∴.故选:A.【点睛】此题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关键.7、D【解析】【分析】原式化为,根据平方差公式进行求解即可.【详解】解:故选D.【点睛】本题考查了平方差公式的应用.解题的关键与难点在于应用平方差公式.8、B【解析】【分析】根据合并同类项法则、同底数幂乘法法则、同底数幂除法法则及积的乘方法则依次计算判断.【详解】解:A、a4与a3不是同类项,不能合并,故该项不符合题意;B、a4•a3=a7,故该项符合题意;C、a4÷a3=a,故该项不符合题意;D、(﹣2a3)4=16a12,故该项不符合题意;故选:B.【点睛】此题考查了整式的计算法则,熟记合并同类项法则、同底数幂乘法法则、同底数幂除法法则及积的乘方法则是解题的关键.9、D【解析】【分析】利用单项式除以单项式法则,即可求解.【详解】解:.故选:D【点睛】本题主要考查了单项式除以单项式,熟练掌握单项式除以单项式法则是解题的关键.10、B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:9514.8万=95148000=9.5148×107.故选:B.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题1、【解析】【分析】由题意直接根据正方形和长方形的面积公式即可得到结论.【详解】解:方案一:如图1,,方案二:如图2,,,.故答案为:.【点睛】本题考查了图形的面积,正确识别图形是解题的关键.2、20【解析】【分析】根据阴影部分的面积等于两个正方形的面积之和减去空白的面积,列式化简,再把a+b=10,ab=20代入计算即可.【详解】解:∵大小两个正方形边长分别为a、b,∴阴影部分的面积S=a2+b2a2(a+b)ba2b2ab;∵a+b=10,ab=20,∴Sa2b2ab(a+b)2ab10220=20.故答案为:20.【点睛】本题考查了完全平方公式的几何背景,熟练掌握完全平方公式及正方形和三角形的面积计算是解题的关键.3、2.5×105【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【详解】解:250000=2.5×105.故答案为:2.5×105.【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4、 0 5【解析】【分析】根据题意直接利用零指数幂的性质得出2x+y﹣5=0,进而得出关于x,y的方程组求出即可.【详解】解:∵(2x+y﹣5)0=1无意义,且3x+2y=10,∴,解得:.故答案为:0,5.【点睛】本题主要考查零指数幂的性质以及二元一次方程组的解法,正确解二元一次方程组是解题的关键.5、-5.107×106【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:-5107000=-5.107×106.故答案为:-5.107×106.【点睛】本题考查用科学记数法表示绝对值大于1的数.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.三、解答题1、 (1)(2)【解析】【分析】(1)根据有理数的乘方,负整指数幂,零次幂的运算法则进行计算即可;(2)先计算括号内的,将除法转化为乘法运算,根据乘法分配律进行计算,再进行有理数的混合运算即可;(1)解:(2)解:【点睛】本题考查了有理数的混合运算,零次幂,负整指数幂,掌握运算法则是解题的关键.2、5x+19,9【解析】【分析】先计算多形式的乘法,再去括号合并同类项,然后把x=﹣2代入计算.【详解】解:原式=2x2+x-2x-1-2(x2+2x-5x-10)=2x2+x-2x-1-2x2-4x+10x+20=5x+19,当x=﹣2时,原式=-10+19=9【点睛】本题考查了整式的四则混合运算,熟练掌握运算顺序是解答本题的关键.四则混合运算的顺序是先算乘除,再算加减;同级运算,按从左到右的顺序计算.3、 (1)(2)【解析】【分析】(1)根据多项式除以单项式进行计算即可;(2)先根据完全平方公式和平方差公式展开进而根据整式的加减进行计算即可(1)解:原式(2)解:原式【点睛】本题考查了整式的乘除运算,正确的计算是解题的关键.4、 (1)(2)【解析】【分析】(1)直接利用整式的乘法运算法则计算进而得出答案;(2)直接利用整式的乘法运算法则展开后,合并同类项计算进而得出答案;.(1)解:,,;(2)解:,,.【点睛】本题主要考查了整式的混合运算,解题的关键是正确掌握相关运算法则.5、 (1)5,10,10,5(2),,(3),理由见解析(4)1【解析】【分析】(1)根据材料二的规律即可得;(2)根据归纳出规律,由此即可得;(3)先求出的展开式的各项系数之和,再归纳出一般规律,由此即可得;(4)参考的展开式即可得.(1)解:由材料二得:,故答案为:5,10,10,5;(2)解:是一次二项式,的展开式是二次三项式,的展开式是三次四项式,则多项式的展开式是次项式,由材料二的图可知,的第三项的系数是,的第三项的系数是,的第三项的系数是,的第三项的系数是,归纳类推得:的第三项的系数是,故答案为:,,;(3)解:多项式取正整数)的展开式的各项系数之和为,理由如下:的展开式的各项系数之和是,的展开式的各项系数之和是,的展开式的各项系数之和是,的展开式的各项系数之和是,归纳类推得:多项式的展开式的各项系数之和为;(4)解:.【点睛】本题考查了多项式的乘法,正确归纳类推出一般规律是解题关键.
相关试卷
这是一份冀教版七年级下册第八章 整式乘法综合与测试课后练习题,共18页。试卷主要包含了下列计算正确的是,若的结果中不含项,则的值为等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第八章 整式乘法综合与测试巩固练习,共16页。试卷主要包含了下列计算正确的是,纳米,若,则的值为,已知,,则的值为等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第八章 整式乘法综合与测试课时练习,共18页。试卷主要包含了在下列运算中,正确的是,已知,,则下列关系成立的是等内容,欢迎下载使用。