冀教版七年级下册第七章 相交线与平行线综合与测试单元测试同步测试题
展开
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试单元测试同步测试题,共20页。试卷主要包含了下列命题中,是假命题的是等内容,欢迎下载使用。
冀教版七年级下册第七章相交线与平行线单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、如图,∠1=35°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为 ( )A.125° B.115° C.105° D.95°2、把直线a沿水平方向平移4cm,平移后的线为直线b,则直线a与直线b之间的距离为( )A.等于4cm B.小于4cmC.大于4cm D.不大于4cm3、下列说法错误的是( )A.经过两点,有且仅有一条直线B.平面内过一点有且只有一条直线与已知直线垂直C.两点之间的所有连线中,线段最短D.平面内过一点有且只有一条直线与已知直线平行4、下列命题中,是假命题的是( )A.在同一平面内,过一点有且只有一条直线与已知直线垂直B.同旁内角互补,两直线平行C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行D.过一点有且只有一条直线与已知直线平行5、点P是直线外一点,为直线上三点,,则点P到直线的距离是( )A.2cm B.小于2cm C.不大于2cm D.4cm6、如图,某位同学将一副三角板随意摆放在桌上,则图中的度数是( )A.70° B.80° C.90° D.100°7、如图,下列给定的条件中,不能判定的是( )A. B. C. D.8、如图,直线AB与CD相交于点O,若,则等于( )A.40° B.60° C.70° D.80°9、如图,O为直线AB上一点,∠COB=36°12',则∠AOC的度数为( )A.164°12' B.136°12' C.143°88' D.143°48'10、在下列汽车标志的图案中,能用图形的平移来分析其形成过程的是( )A. B.C. D.第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、平移的性质:①把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小______.②新图形中的每一个点,都是由原图形中的某一点移动后得到的,这两个点是对称点,连接各组对应点的线段______且______.2、如图,将直角三角形ABC沿BC方向平移得到直角三角形DEF,其中AB=6,BE=3,DM=2,则阴影部分的面积是______.3、如图,AB∥CD,∠EGB=50°,则∠CHG的大小为 _____.4、如图,直线AB、CD、EF相交于点O,,OG平分∠BOE,且∠EOG=36°,则∠AOC=______.5、如图,AB∥CD,M在AB上,N在CD上,求∠1+∠2+∠3+∠4=_______.三、解答题(5小题,每小题10分,共计50分)1、如图,在中,平分交于D,平分交于F,已知,求证:.2、如图,方格纸中每个小正方形的边长都是1.(1)过点P画,PM与直线AB相交于点M;(2)若点N在图中的格点上(不与点A重合),且直线NA与直线AC垂直,这样的格点(图中)有______个;(3)连接PB、PC,则四边形PBAC的面积是______.3、如图,已知ABCD,BE平分∠ABC,∠CDE = 150°,求∠C的度数.4、如图,已知AB∥CD,BE平分∠ABC,DB平分∠CDF,且∠ABC+∠CDF=180°.求证:BE⊥DB.证明:∵AB∥CD∴∠ABC=∠BCD( )∵∠ABC+∠CDF=180°( )∴∠BCD+∠CDF=180°( )∴BC∥DF( )于是∠DBC=∠BDF( )∵BE平分∠ABC,DB平分∠CDF∴∠EBC=∠ABC,∠BDF= ( )∵∠EBC+∠DBC=∠EBC+∠BDF=(∠ABC+∠CDF)即∠EBD= ∴BE⊥DB( )5、如图,已知AE平分∠BAC交BC于点E,AF平分∠CAD交BC的延长线于点F,∠B=64°,∠EAF=58°,试判断AD与BC是否平行.解:∵AE平分∠BAC,AF平分∠CAD(已知),∴∠BAC=2∠1,∠CAD= ( ).又∵∠EAF=∠1+∠2=58°,∴∠BAD=∠BAC+∠CAD=2(∠1+∠2)= °(等式性质).又∵∠B=64°(已知),∴∠BAD+∠B= °.∴ ( ). -参考答案-一、单选题1、A【解析】【分析】利用互余角的概念与邻补角的概念解答即可.【详解】解:∵∠1=35°,∠AOC=90°,∴∠BOC=∠AOC−∠1=55°.∵点B,O,D在同一条直线上,∴∠2=180°−∠BOC=125°.故选:A.【点睛】本题主要考查了角的和差运算,互余角的关系以及邻补角的关系.准确使用邻补角的关系是解题的关键.2、D【解析】【分析】根据平行线间的距离的定义解答即可.【详解】解:分两种情况:如果直线a与水平方向垂直,则直线a与b之间的距离为4cm,若果直线a与水平方向不垂直, 则直线a与b之间的距离小于4cm直线a与直线b之间的距离不大于4cm.故选D.【点睛】本题主要考查了直线的平移和平行线之间的距离, 平行线之间的距离是指从一条平行线上的任意一点到另一条平行线作垂线,垂线段的长度叫两平行线间的距离.另外,掌握分类讨论思想是正确解答本题关键.3、D【解析】【分析】根据垂线的性质、线段的性质、直线的性质、平行公理判断下列选项.【详解】解:由垂线的性质、线段的性质、直线的性质可知、、正确;A、根据直线的性质可知选项正确,不符合题意;B、根据垂线的性质可知选项正确,不符合题意;C、根据线段的性质可知选项正确,不符合题意;D、由平行公理可知选项不正确,需要保证该点不在已知直线上,符合题意;故选:D.【点睛】本题主要考查了垂线的性质、线段的性质、直线的性质、平行公理,解题的关键是掌握相关的概念.4、D【解析】【分析】根据垂线公理,平行线的判定,平行线的传递,平行线的性质进行判断即可.【详解】解:A、在同一平面内,过一点有且只有一条直线与已知直线垂直,这个命题为真命题;B、同旁内角互补,两直线平行,这个命题为真命题;C、如果两条直线都与第三条直线平行,那么这两条直线也互相平行,这个命题为真命题;D、过直线外一点有且只有一条直线与已知直线平行,故这个命题是假命题.故选:D.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5、C【解析】【分析】根据“直线外一点到直线上各点的所有线段中,垂线段最短”进行解答.【详解】解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,且,∴点到直线的距离不大于,故选:C.【点睛】本题考查了垂线段最短的性质,熟记性质是解题的关键.6、C【解析】【分析】如图(见解析),过点作,先根据平行线的性质可得,再根据角的和差即可得.【详解】解:如图,过点作,,,,,故选:C.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题关键.7、A【解析】【分析】根据平行线的判定条件:同位角相等,两直线平行,同旁内角互补,两直线平行,内错角相等,两直线平行,进行逐一判断即可.【详解】解:A选项:当∠1=∠A时,可知是DE和AC被AB所截得到的同位角,可得到DE∥AC,而不是AB∥DF,故符合题意;B选项:当∠A=∠3时,可知是AB、DF被AC所截得到的同位角,可得AB∥DF,故不符合题意;C选项:当∠1=∠4时,可知是AB、DF被DE所截得到的内错角,可得AB∥DF,故不符合题意;D选项:当∠2+∠A=180°时,是一对同旁内角,可得AB∥DF;故不符合题意;故选A.【点睛】本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.8、A【解析】【分析】根据对顶角的性质,可得∠1的度数.【详解】解:由对顶角相等,得∠1=∠2,又∠1+∠2=80°,∴∠1=40°.故选:A.【点睛】本题考查的是对顶角,掌握对顶角相等这一性质是解决此题关键.9、D【解析】【分析】根据邻补角及角度的运算可直接进行求解.【详解】解:由图可知:∠AOC+∠BOC=180°,∵∠COB=36°12',∴∠AOC=180°-∠BOC=143°48',故选D.【点睛】本题主要考查邻补角及角度的运算,熟练掌握邻补角及角度的运算是解题的关键.10、C【解析】【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.【详解】解:A.不是由“基本图案”经过平移得到,故此选项不合题意;B.不是由“基本图案”经过平移得到,故此选项不合题意;C.是由“基本图案”经过平移得到,故此选项符合题意;D.不是由“基本图案”经过平移得到,故此选项不合题意;故选:C.【点睛】本题主要考查了图形的平移,在平面内,把一个图形整体沿某一的方向移动,学生混淆图形的平移与旋转或翻转,而误选.二、填空题1、 完全相同 平行(或共线) 相等【解析】略2、【解析】【分析】由平移的性质可得阴影四边形的面积=梯形ABEM的面积,利用梯形的面积公式计算可求解.【详解】解:由平移可得:DE=AB=6,阴影四边形DMCF的面积=梯形ABEM的面积,∵DM=2,∴ME=DE-DM=6-2=4,∵BE=3,∴梯形ABEM的面积=(ME+AB)•BE=(4+6)×3=15.故答案为:15.【点睛】本题主要考查了平移的性质,梯形的面积公式,掌握平移的性质是解题的关键.3、130°【解析】【分析】根据平行线的性质可得∠EHD=∠EGB=50°,再利用邻补角的性质可求解.【详解】解:∵AB∥CD,∠EGB=50°,∴∠EHD=∠EGB=50°,∴∠CHG=180°﹣∠EHD=130°.故答案为:130°.【点睛】本题主要考查平行线的性质,邻补角,属于基础题.4、18°##18度【解析】【分析】首先根据角平分线的性质可得∠BOE=72°,则对顶角相等:∠AOF=72°,进而可以根据垂直的定义解答.【详解】解:∵∠EOG=36°,OG平分∠BOE,∴∠BOE=2∠BOG=72°,∴∠AOF=∠BOE=72°,又CD⊥EF,∴∠COE=90°,∴∠AOC=90°-72°=18°.故答案为:18°.【点睛】本题考查的知识点是垂线,角平分线的定义,对顶角、解题的关键是熟练的掌握垂线,角平分线的定义,对顶角.5、540°【解析】【分析】首先过点E、F作EG、FH平行于AB,根据两直线平行,同旁内角互补,即可求得答案.【详解】如图,过点E、F作EG、FH平行于AB,∵AB∥CD,∵AB∥EG∥FH∥CD,∴∠1+∠MEG=180°,∠GEF+∠EFH=180°,∠HFN+∠4=180°,∴∠1+∠MEF+∠EFN+∠4=540°,故答案为:540°.【点睛】此题考查了平行线的性质.注意掌握辅助线的作法是解此题的关键.三、解答题1、见解析【解析】【分析】根据∠ADE=∠B可判定DE∥BC,根据平行线的性质得到∠ACB=∠AED,再根据角平分线的定义推出∠ACD=∠AEF,即可判定EF∥CD.【详解】证明:(已知),(同位角相等,两直线平行),(两直线平行,同位角相等),平分,平分(已知),,(角平分线的定义),(等量代换).(同位角相等,两直线平行).【点睛】此题考查了平行线的判定与性质,以及角平分线的定义,熟练掌握平行线的判定与性质是解题的关键.2、(1)见解析;(2)3个;(3)10.5【解析】【分析】(1)直接利用网格结合平行线的判定方法得出答案;(2)利用数形结合的思想画出图形即可;(3)利用四边形PBAC所在矩形减去周围三角形面积得出答案.【详解】解:(1)如图所示:(2)这样的格点N共有3个,如图所示,故答案为:3.(3)四边形PBAC的面积为:3×7-×1×2-×5×2-×1×5-×2×2=10.5.【点睛】本题主要考查了应用设计与作图,正确借助网格分析是解题关键.3、∠C的度数为120°【解析】【分析】首先由∠CDE=150°和平角的概念得到∠CDB=30°;然后根据两直线平行,内错角相等得到∠ABD=∠CDB=30°,进而根据角平分线的定义求出∠ABC=60°,最后根据两直线平行,同旁内角互补即可求出∠C的度数.【详解】解:∵∠CDE=150°, ∴∠CDB=180°-∠CDE=30°, 又∵ABCD, ∴∠ABD=∠CDB=30°,∵BE平分∠ABC, ∴∠ABC=2∠ABD=60°, ∵ABCD, ∴∠C=180°-∠ABC=120°.【点睛】本题考查平行线基本性质与邻补角关系,基础知识牢固是本题解题关键.4、两直线平行,内错角相等;已知;等量代换;同旁内角相等,两直线平行;两直线平行,内错角相等;∠CDF,角平分线定义;90°;垂直的定义.【解析】【分析】结合条件与图形,读懂每一步推理及推理的依据,即可完成解答.【详解】∵AB∥CD,∴∠ABC=∠BCD(两直线平行,内错角相等),∵∠ABC+∠CDF=180°(已知),∴∠BCD+∠CDF=180°(等量代换),∴BC∥DF(同旁内角互补,两直线平行),于是∠DBC=∠BDF(两直线平行,内错角相等),∵BE平分∠ABC,DB平分∠CDF,∴∠EBC=∠ABC,∠BDF=∠CDF(角平分线定义),∵∠EBC+∠DBC=∠EBC+∠BDF=(∠ABC+∠CDF),即∠EBD=90°,∴BE⊥DB(垂直的定义).故答案分别为;两直线平行,内错角相等;已知;等量代换;同旁内角相等,两直线平行;两直线平行,内错角相等;∠CDF,角平分线定义;90°;垂直的定义【点睛】本题考查了平行线的判定与性质,角平分线的定义及垂直的定义等知识,根据题意读懂每步推理,弄清每步推理的依据是完成本题的关键.5、2∠2;角平分线的定义;116;180;AD;BC;同旁内角互补,两直线平行【解析】【分析】由AE平分∠BAC,AF平分∠CAD,利用角平分线的定义可得出∠BAC=2∠1,∠CAD=2∠2,结合∠EAF=∠1+∠2=58°可得出∠BAD=116°,由∠B=64°,∠BAD=116°,可得出∠BAD+∠B=180°,再利用“同旁内角互补,两直线平行”即可得出AD∥BC.【详解】解:∵AE平分∠BAC,AF平分∠CAD(已知),∴∠BAC=2∠1,∠CAD=2∠2(角平分线的定义).又∵∠EAF=∠1+∠2=58°,∴∠BAD=∠BAC+∠CAD=2(∠1+∠2)=116°(等式性质).又∵∠B=64°(已知),∴∠BAD+∠B=180°.∴AD∥BC(同旁内角互补,两直线平行).故答案为:2∠2;角平分线的定义;116;180;AD;BC;同旁内角互补,两直线平行.【点睛】此题考查了角平分线的定义,角的计算,平行线的判定.正确掌握线段、角、相交线与平行线的知识是解题的关键,还需掌握推理能力.
相关试卷
这是一份初中数学第七章 相交线与平行线综合与测试课后作业题,共21页。试卷主要包含了下列命题中,为真命题的是,下列语句正确的个数是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试课后练习题,共23页。试卷主要包含了以下命题是假命题的是,如图,点A等内容,欢迎下载使用。
这是一份2020-2021学年第七章 相交线与平行线综合与测试习题,共24页。试卷主要包含了下列说法中,错误的是等内容,欢迎下载使用。