初中数学第七章 相交线与平行线综合与测试同步练习题
展开
这是一份初中数学第七章 相交线与平行线综合与测试同步练习题,共23页。试卷主要包含了下列说法正确的有,下列语句正确的个数是等内容,欢迎下载使用。
冀教版七年级下册第七章相交线与平行线章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、如图,点A、O、B在一条直线上,,OD平分,现将OC以每秒5°的速度绕点O顺时针旋转一周,OD保持不动.当时,OC的运动时间为( )A.5秒 B.31秒 C.5秒或41秒 D.5秒或67秒2、下列说法正确的是( )A.同位角相等B.在同一平面内,如果a⊥b,b⊥c,则a⊥cC.相等的角是对顶角D.在同一平面内,如果a∥b,b∥c,则a∥c3、如图,点P是直线m外一点,A、B、C三点在直线m上,PB⊥AC于点B,那么点P到直线m的距离是线段( )的长度.A.PA B.PB C.PC D.AB4、如图,O为直线AB上一点,∠COB=36°12',则∠AOC的度数为( )A.164°12' B.136°12' C.143°88' D.143°48'5、下列说法正确的有( ) ①两点之间的所有连线中,线段最短;②相等的角叫对顶角;③过一点有且只有一条直线与已知直线平行;④若AC=BC,则点C是线段AB的中点; ⑤在同一平面内,经过一点有且只有一条直线与已知直线垂直.A.1个 B.2个 C.3个 D.4个6、如图,直线,相交于点,,,平分,给出下列结论:①当时,;②为的平分线;③若时,;④.其中正确的结论有( )A.4个 B.3个 C.2个 D.1个7、下列语句正确的个数是( )(1)经过平面内一点有且只有一条直线与已知直线垂直;(2)经过平面内一点有且只有一条直线与已知直线平行;(3)在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(4)在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相平行.A.1个 B.2个 C.3个 D.4个8、如图,下列四个选项中不能判断AD∥BC的是( )A. B.C. D.9、如图所示,AB∥CD,若∠2=2∠1﹣6°,则∠2等于( )A.116° B.118° C.120° D.124°10、如图,△ABC沿BC方向平移到△DEF的位置,若BE=3cm,则平移的距离为( )A.1cm B.2cm C.3cm D.4cm第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、如图,将三角形沿射线方向平移到三角形的位置,厘米,厘米,则平移距离为__厘米.2、在同一平面内有2021条直线a1,a2,a3,…,a2021,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,那么a1与a5的位置关系是_____;a1与a2021的位置关系是_____.3、如图所示,点A,B,C,D在同一条直线上.在线段PA,PB,PC,PD中,最短的线段是________,理由是________.4、如图,已知AD∥CE,∠BCF=∠BCG,CF与∠BAH的平分线交于点F,若∠AFC的余角等于2∠ABC的补角,则∠BAH的度数是______.5、如图,,,有下列结论:①;②;③;④.其中正确的有______.(只填序号)三、解答题(5小题,每小题10分,共计50分)1、完成下面的证明:已知:如图,∠1=30°,∠B=60°,AB⊥AC.求证:AD∥BC.证明:∵AB⊥AC(已知)∴∠ =90°( )∵∠1=30°,∠B=60°(已知)∴∠1+∠BAC+∠B= ( )即∠ +∠B=180°∴AD∥BC( )2、如图,方格纸中每个小正方形的边长为1,点A、B、C均为格点.(1)根据要求画图:①过点C画;②过点C画,垂足为D;(2)图中线段______的长度表示点A到直线CD的距离;(3)比较线段CA、CD的大小关系是______.3、如图,已知∠ADC=∠ABC,DE、BF分别平分∠ADC和∠ABC,且DE∥BF,那么AB与DC平行吗?为什么?4、如图,点G在上,已知,平分,平分请说明的理由.解:因为(已知),(邻补角的性质),所以(________________)因为平分,所以(________________).因为平分,所以______________,得(等量代换),所以_________________(________________).5、如图,在方格纸中,每个小正方形的边长为一个长度单位,点A、B、C都在格点上.(1)画出线段BC;(2)将线段BC向上平移三个单位,得到线段DE,在图中画出线段DE;(3)三角形ADE的面积= . -参考答案-一、单选题1、C【解析】【分析】根据,求出补角得出 ∠AOC=180°-∠BOC=180°-50°=130°,根据OD平分,得出∠DOC=∠AOD=,设OC以每秒5°的速度绕点O顺时针旋转的时间为t秒,当时,CO旋转所成的角度为∠DOC=90°或∠DOC=270°,列方程65°+5°t=90°或65°+5°t=270°解方程即可.【详解】解:∵, ∴∠AOC=180°-∠BOC=180°-50°=130°,∵OD平分,是由∠DOC=∠AOD=,设OC以每秒5°的速度绕点O顺时针旋转的时间为t,当时,CO旋转所成的角度为∠DOC=90°,或∠DOC=270°,∴65°+5°t=90°或65°+5°t=270°,∴t=5秒或41秒.故选C.【点睛】本题考查补角性质,角平分线,两直线垂直性质,角的和差,图形旋转,解一元一次方程,掌握补角性质,角平分线,两直线垂直性质,角的和差,图形旋转,解一元一次方程是解题关键.2、D【解析】【分析】根据同位角的定义、垂线的性质、对顶角的性质、平行公理依次判断.【详解】解:A. 同位角不一定相等,故该项不符合题意;B. 在同一平面内,如果a⊥b,b⊥c,则ac,故该项不符合题意;C. 相等的角不一定是对顶角,故该项不符合题意;D. 在同一平面内,如果ab,bc,则ac,故该项符合题意;故选:D.【点睛】此题考查了语句的判断,正确掌握同位角的定义、垂线的性质、对顶角的性质、平行公理是解题的关键.3、B【解析】【分析】根据点到直线的距离的定义解答即可.【详解】解:∵PB⊥AC于点B,∴点P到直线m的距离是线段B的长度.故选:B.【点睛】本题主要考查了点到直线的距离的定义,从直线外一点到这条直线的垂线段长度叫点到直线的距离.4、D【解析】【分析】根据邻补角及角度的运算可直接进行求解.【详解】解:由图可知:∠AOC+∠BOC=180°,∵∠COB=36°12',∴∠AOC=180°-∠BOC=143°48',故选D.【点睛】本题主要考查邻补角及角度的运算,熟练掌握邻补角及角度的运算是解题的关键.5、B【解析】【分析】根据线段的性质,对顶角相等的性质,平行公理,对各小题分析判断即可得解.【详解】解:①两点之间的所有连线中,线段最短,正确;②相等的角不一定是对顶角,但对顶角相等,故本小题错误;③过直线外一点有且仅有一条直线与已知直线平行,故本小题错误;④若AC=BC,且A、B、C三点共线,则点C是线段AB的中点,否则不是,故本小题错误,⑤在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;所以,正确的结论有①⑤共2个.故选:B.【点睛】本题考查了平行公理,线段的性质,对顶角的判断,是基础题,熟记概念与性质是解题的关键.6、B【解析】【分析】由邻补角,角平分线的定义,余角的性质进行依次判断即可.【详解】解:∵∠AOE=90°,∠DOF=90°,∴∠BOE=90°=∠AOE=∠DOF,∴∠AOF+∠EOF=90°,∠EOF+∠EOD=90°,∠EOD+∠BOD=90°,∴∠EOF=∠BOD,∠AOF=∠DOE,∴当∠AOF=50°时,∠DOE=50°;故①正确;∵OB平分∠DOG,∴∠BOD=∠BOG,∴∠BOD=∠BOG=∠EOF=∠AOC,故④正确;∵,∴∠BOD=180°-150°=30°,∴故③正确;若为的平分线,则∠DOE=∠DOG,∴∠BOG+∠BOD=90°-∠EOE,∴∠EOF=30°,而无法确定,∴无法说明②的正确性;故选:B.【点睛】本题考查了邻补角,角平分线的定义,余角的性质,数形结合是解决本题的关键.7、C【解析】【分析】由题意直接根据平行公理及平行线的判定定理进行判断即可.【详解】解:经过平面内一点有且只有一条直线与已知直线垂直,故(1)正确;经过直线外一点有且只有一条直线与已知直线平行,故(2)不正确;平面内,平行具有传递性,故(3)正确;同一平面内,如果两条直线都与第三条直线垂直,则同位角(内错角)相等,这两条直线互相平行,故(4)正确,∴正确的有(1)、(3)、(4),故选:C.【点睛】本题考查平行公理及平行线的判定定理,熟练掌握理解平行线公理及判定定理是解题的关键.8、D【解析】【分析】直接利用平行线的判定定理分析得出答案.【详解】解:A、已知,那么AD∥BC,故此选项不符合题意;B、已知,那么AD∥BC,故此选项不符合题意;C、已知,那么AD∥BC,故此选项不符合题意;D、已知,那么AB∥CD,不能推出AD∥BC,故此选项符合题意;故选:D.【点睛】本题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.9、B【解析】【分析】由AB与CD平行,利用两直线平行同旁内角互补得到∠2+∠3=180°,由对顶角相等得到∠1=∠3,等量代换得到∠1=180°-∠2,再代入∠2=2∠1﹣6°,即可求出∠2的度数.【详解】解:如图:∵AB∥CD,∴∠2+∠3=180°,∴∠3=180°-∠2,∵∠1=∠3,∴∠1=180°-∠2,∴∠2=2(180°-∠2)﹣6°,∴∠2=118°,故选:B.【点睛】此题考查了对顶角性质和平行线的性质,掌握两直线平行同旁内角互补是解答此题的关键.10、C【解析】【分析】根据题意可得 的长度等于平移的距离,即可求解.【详解】∵△ABC沿BC方向平移到△DEF的位置,∴点 的对应点为 ,即 的长度等于平移的距离,∵BE=3cm,∴平移的距离为3cm.故选:C【点睛】本题主要考查了图形的平移,熟练掌握平移的距离都等于对应点间长度是解题的关键.二、填空题1、3【解析】【分析】根据平移的性质和线段的和差关系即可求得即平移的距离【详解】解:由平移的性质可知,平移的距离,故答案为:3.【点睛】本题考查了平移的性质,掌握平移的性质是解题的关键.2、 平行 平行【解析】【分析】根据平行线的性质和规律得到:4条直线的位置关系为一个循环.【详解】如图,a1⊥a2,a2∥a3,∴a1⊥a3,∵a3⊥a4,∴a1∥a4,∵a4∥a5,∴a1∥a5,…,依此类推,a1⊥a6,a1⊥a7,a1∥a8,a1∥a9,连续4条直线的位置关系为一个循环.∴2021=505×4+1,∴a1∥a2021.故答案是:平行;平行.【点睛】本题考查了平行线的性质,解题的关键是找到直线位置关系的规律.3、 PC 垂线段最短【解析】【分析】根据垂线段最短求解即可.【详解】解:∵,PA,PB,PD都不垂直于AD,∴由垂线段最短可得,最短的线段是PC,理由是:垂线段最短.故答案为:PC;垂线段最短.【点睛】此题考查了垂线段最短的性质,解题的关键是熟练掌握垂线段最短.4、60°##60度【解析】【分析】设∠BAF=x°,∠BCF=y°,由题意知∠HAF=∠BAF=x°,∠BCG=∠BCF=x°,∠BAH=2x°,∠GCF=2y°,如图,过点B作BM∥AD,过点F作FN∥AD,由AD∥CE可得AD∥FN∥BM∥CE,有∠AFN=∠HAF=x°,∠CFN=∠GCF=2y°,ABM=∠BAH=2x°,∠CBM=∠GCB=y°,∠AFC=(x+2y)°,∠ABC=(2x+y)°由于∠F的余角等于2∠B的补角,可知90﹣(x+2y)=180﹣2(2x+y),进行求解可得x的值,进而可求出∠BAH的值.【详解】解:设∠BAF=x°,∠BCF=y°∵∠BCF=∠BCG,CF与∠BAH的平分线交于点F∴∠HAF=∠BAF=x°,∠BCG=∠BCF=x°,∠BAH=2x°,∠GCF=2y°,如图,过点B作BM∥AD,过点F作FN∥AD∵AD∥CE∴AD∥FN∥BM∥CE∴∠AFN=∠HAF=x°,∠CFN=∠GCF=2y°,∠ABM=∠BAH=2x°,∠CBM=∠GCB=y°∴∠AFC=(x+2y)°,∠ABC=(2x+y)°∵∠AFC的余角等于2∠ABC的补角∴90﹣(x+2y)=180﹣2(2x+y)解得:x=30∴∠BAH=60°故答案为:60°.【点睛】本题考查了角平分线,平行线的性质,余角、补角等知识.解题的关键在于正确的表示角度之间的数量关系.5、①②④【解析】【分析】由条件可先证明∠B=∠C,再证明AE∥DF,结合平行线的性质及对顶角相等可得到∠AMC=∠BND,可得出答案.【详解】解:,,,又,,,,又,,故①②④正确,由条件不能得出,故③不一定正确;故答案为:①②④.【点睛】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键.三、解答题1、见解析【解析】【分析】先根据垂直的定义可得,再根据角的和差可得,从而可得,然后根据平行线的判定即可得证.【详解】证明:∵(已知),∴(垂直的定义),∵,(已知),∴(等量关系),即,∴(同旁内角互补,两直线平行).【点睛】本题考查了垂直、平行线的判定等知识点,熟练掌握平行线的判定是解题关键.2、 (1)见解析(2)AD(3)CA大于CD【解析】【分析】(1)根据题意画图即可;(2)根据点A到直线CD的距离是垂线段AD长,即可填空;(3)根据垂线段最短即可填空.(1)解:①如图所示,直线即为所求②直线EF和点D即为所求;(2)解:点A到直线CD的距离是垂线段AD长,故答案为:AD.(3)解:根据垂线段最短可知,CA大于CD,故答案为:CA大于CD.【点睛】本题考查了画平行线和垂线,垂线的性质,点的直线的距离,解题关键是熟练画图,准确掌握垂线段最短的性质.3、AB∥DC,理由见解析.【解析】【分析】根据平行线的性质推出∠DEA=∠FBA,再根据角平分线性质推出∠CDE=∠FBA,等量代换得到∠CDE=∠DEA,根据平行线的判定推出即可.【详解】解:AB∥DC,理由如下:∵DE∥BF,∴∠DEA=∠FBA,∵∠ADC=∠ABC,DE、BF分别平分∠ADC和∠ABC,∴∠CDE=∠CDA=∠CBA=∠FBA=∠DEA,∴AB∥DC.【点睛】本题主要考查对平行线的性质和判定,角平分线性质等知识点的理解和掌握,能推出∠CDE=∠DEA是解此题的关键.4、同角的补角相等,角平分线的定义,∠AGC,,内错角相等两直线平行【解析】【分析】根据补角的性质,角平分线的定义,及平行线的判定定理依次分析解答.【详解】解:因为(已知),(邻补角的性质),所以(同角的补角相等)因为平分,所以(角平分线的定义).因为平分,所以∠AGC,得(等量代换),所以(内错角相等两直线平行),故答案为:同角的补角相等,角平分线的定义,∠AGC,,内错角相等两直线平行.【点睛】此题考查了平行线的判定定理,熟记补角的性质,角平分线的定义及平行线的判定定理是解题的关键.5、(1)见解析;(2)见解析;(3)8【解析】【分析】(1)连接B、C两点即可;(2)根据平移的定义,得出对应点的位置,连接即可;(3)根据三角形的面积公式计算即可.【详解】解:(1)线段BC如图所示,(2)线段DE如图所示,(3)三角形ADE的面积=【点睛】本题考查作图-平移变换.解题的关键是熟练掌握平移变换的性质.
相关试卷
这是一份初中数学第七章 相交线与平行线综合与测试课后作业题,共21页。试卷主要包含了下列命题中,为真命题的是,下列语句正确的个数是等内容,欢迎下载使用。
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试课后测评,共20页。试卷主要包含了如图,点A,如图,不能推出a∥b的条件是,如图,下列条件中能判断直线的是等内容,欢迎下载使用。
这是一份数学七年级下册第七章 相交线与平行线综合与测试课时练习,共23页。试卷主要包含了下列命题是真命题的是,下列命题不正确的是等内容,欢迎下载使用。