冀教版七年级下册第七章 相交线与平行线综合与测试同步训练题
展开这是一份冀教版七年级下册第七章 相交线与平行线综合与测试同步训练题,共22页。试卷主要包含了下列命题不正确的是,下列命题中,是假命题的是等内容,欢迎下载使用。
冀教版七年级下册第七章相交线与平行线必考点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、下列语句正确的个数是( )
(1)经过平面内一点有且只有一条直线与已知直线垂直;
(2)经过平面内一点有且只有一条直线与已知直线平行;
(3)在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线也互相平行;
(4)在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相平行.
A.1个 B.2个 C.3个 D.4个
2、已知∠α的两边分别平行于∠β的两边.若∠α=60°,则∠β的大小为( )
A.30° B.60° C.30°或60° D.60°或120°
3、如图,不能推出a∥b的条件是( )
A.∠4=∠2 B.∠3+∠4=180° C.∠1=∠3 D.∠2+∠3=180°
4、下面的四个图形中,能够通过基本图形平移得到的图形有( )
A.1个 B.2个 C.3个 D.4个
5、如图,已知直线AD∥BC,BE平分∠ABC交直线DA于点E,若∠DAB=54°,则∠E等于( )
A.25° B.27° C.29° D.45°
6、下列命题不正确的是( )
A.直角三角形的两个锐角互补 B.两点确定一条直线
C.两点之间线段最短 D.三角形内角和为180°
7、下列命题中,是假命题的是( )
A.在同一平面内,过一点有且只有一条直线与已知直线垂直
B.同旁内角互补,两直线平行
C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行
D.过一点有且只有一条直线与已知直线平行
8、如图,给出下列条件,①∠1=∠2,②∠3=∠4,③ADBE,且∠D=∠B,④ADBE,且∠DCE=∠D,其中能推出ABDC的条件为( )
A.①② B.②③ C.③④ D.②③④
9、下列图形中,由∠1=∠2能得到ABCD的图形有( )个
A.4 B.3 C.2 D.1
10、如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=40°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转( )
A.15° B.20° C.25° D.30°
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,直线,三角尺(30°,60,90°)如图摆放,若∠1=52°,则∠2的度数为 _____.
2、如图,把一条两边边沿互相平行的纸带折叠,若,则_______.
3、如图,已知EF∥GH,AC⊥CD,∠DCH=35°,则∠CBF=______度.
4、如图,将三角形沿射线方向平移到三角形的位置,厘米,厘米,则平移距离为__厘米.
5、已知:如图,在三角形ABC中,于点D,连接DE,当时,求证:DEBC.
证明:∵(已知),
∴(垂直的定义).
∴________,
∵(已知),
∴________(依据1:________),
∴(依据2:________).
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知AE平分∠BAC交BC于点E,AF平分∠CAD交BC的延长线于点F,∠B=64°,∠EAF=58°,试判断AD与BC是否平行.
解:∵AE平分∠BAC,AF平分∠CAD(已知),
∴∠BAC=2∠1,∠CAD= ( ).
又∵∠EAF=∠1+∠2=58°,
∴∠BAD=∠BAC+∠CAD
=2(∠1+∠2)
= °(等式性质).
又∵∠B=64°(已知),
∴∠BAD+∠B= °.
∴ ( ).
2、已知:如图,,,.求证:平分.
3、阅读下面的推理过程,将空白部分补充完整.
已知:如图,在△ABC中,FGCD,∠1 = ∠3.
求证:∠B + ∠BDE= 180°.
解:因为FGCD(已知),
所以∠1= .
又因为∠1 = ∠3 (已知),
所以∠2 = (等量代换).
所以BC ( ),
所以∠B + ∠BDE = 180°(___________________).
4、已知A,B,C三点如图所示,
(1)画直线,线段,射线,过点C画的垂线段;
(2)若线段,,,,利用三角形面积公式可以得到C点到的距离是_________.
5、如图,在中,平分交于D,平分交于F,已知,求证:.
-参考答案-
一、单选题
1、C
【解析】
【分析】
由题意直接根据平行公理及平行线的判定定理进行判断即可.
【详解】
解:经过平面内一点有且只有一条直线与已知直线垂直,故(1)正确;
经过直线外一点有且只有一条直线与已知直线平行,故(2)不正确;
平面内,平行具有传递性,故(3)正确;
同一平面内,如果两条直线都与第三条直线垂直,则同位角(内错角)相等,这两条直线互相平行,故(4)正确,
∴正确的有(1)、(3)、(4),
故选:C.
【点睛】
本题考查平行公理及平行线的判定定理,熟练掌握理解平行线公理及判定定理是解题的关键.
2、D
【解析】
【分析】
根据题意画图如图(1),根据平行线性质两直线平行,同位角相等,即可得出∠α=∠1=∠β,即可得出答案,如图(2)根据平行线性质,两直线平行,同旁内角互补,∠α+∠2=180°,再根据两直线平行,内错角相等,∠2=∠β,即可得出答案.
【详解】
解:如图1,
∵a∥b,
∴∠1=∠α,
∵c∥d,
∴∠β=∠1=∠α=60°;
如图(2),
∵a∥b,
∴∠α+∠2=180°,
∵c∥d,
∴∠2=∠β,
∴∠β+∠α=180°,
∵∠α=60°,
∴∠β=120°.
综上,∠β=60°或120°.
故选:D.
【点睛】
本题主要考查了平行线的性质,熟练掌握相关性质进行计算是解决本题的关键.
3、B
【解析】
【分析】
根据平行线的判定方法,逐项判断即可.
【详解】
解:、和是一对内错角,当时,可判断,故不符合题意;
、和是邻补角,当时,不能判定,故符合题意;
、和是一对同位角,当时,可判断,故不合题意;
、和是一对同旁内角,当时,可判断,故不合题意;
故选B.
【点睛】
本题考查了平行线的判定.解题的关键是:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.
4、B
【解析】
【分析】
根据平移的性质,对逐个选项进行分析即可.
【详解】
解:第一个、第二个图不能由基本图形平移得到,
第三个、第四个图可以由基本图形平移得到,
故选:B.
【点睛】
本题主要考查了图形的平移,图形的平移只改变图形的位置,不改变图形的形状,大小,方向.学生比较难区分平移、旋转或翻转.
5、B
【解析】
【分析】
根据两直线平行,内错角相等可求∠ABC=54°,再根据角平分线的性质可求∠EBC=27°,再根据两直线平行,内错角相等可求∠E.
【详解】
解:∵AD∥BC,
∴∠ABC=∠DAB=54°,∠EBC=∠E,
∵BE平分∠ABC,
∴∠EBC=∠ABC=27°,
∴∠E=27°.
故选:B.
【点睛】
本题考查了平行线的性质,角平分线,关键是求出∠EBC=27°.
6、A
【解析】
【分析】
根据直角三角形两锐角互余可直接进行判断.
【详解】
解:A、直角三角形的两个锐角互补,是假命题,符合题意;
B、两点确定一条直线,是真命题,不符合题意;
C、两点之间线段最短,是真命题,不符合题意;
D、三角形内角和为,是真命题,不符合题意;
故选A.
【点睛】
本题考查了假命题的判断,解题的关键是熟练掌握直角三角形两锐角互余.
7、D
【解析】
【分析】
根据垂线公理,平行线的判定,平行线的传递,平行线的性质进行判断即可.
【详解】
解:A、在同一平面内,过一点有且只有一条直线与已知直线垂直,这个命题为真命题;
B、同旁内角互补,两直线平行,这个命题为真命题;
C、如果两条直线都与第三条直线平行,那么这两条直线也互相平行,这个命题为真命题;
D、过直线外一点有且只有一条直线与已知直线平行,故这个命题是假命题.
故选:D.
【点睛】
本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
8、B
【解析】
【分析】
根据平行线的判定逐个判断即可.
【详解】
①∠1=∠2,
②∠3=∠4,
③ADBE,
∠D=∠B,
④∠DCE=∠D,
能推出ABDC的条件为②③
故选B
【点睛】
本题考查了平行线的性质与判定定理,掌握平行线的判定定理是解题的关键.
9、C
【解析】
【分析】
在三线八角的前提下,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此判断即可.
【详解】
解:第一个图形,∵∠1=∠2,
∴AC∥BD;故不符合题意;
第二个图形,∵∠1=∠2,
∴AB∥CD,故符合题意;
第三个图形,
∵∠1=∠2,∠2=∠3,
∴∠1=∠3,
∴AB∥CD;
第四个图形,∵∠1=∠2不能得到AB∥CD,
故不符合题意;
故选:C.
【点睛】
本题考查了平行线的判定,解题的关键是注意平行线判定的前提条件必须是三线八角.
10、B
【解析】
【分析】
若使直线b与直线c平行,则∠1=180°-∠2=140°,还差20°,故旋转20°.
【详解】
解:
∵∠1=120°,
∴∠3=180°-120°=60°.
∵∠2=40°,
∴要使b∥c,则∠2=∠3,
∴直线b绕点A逆时针旋转60°-40°=20°.
故选B.
【点睛】
本题考查直线与平行线相交的性质,掌握这些性质是本题关键.
二、填空题
1、##度
【解析】
【分析】
如图,标注字母,过作 再证明证明从而可得答案.
【详解】
解:如图,标注字母,过作
∠1=52°,
故答案为:
【点睛】
本题考查的是平行公理的应用,平行线的性质,掌握“两直线平行,内错角相等”是解本题的关键.
2、62°##62度
【解析】
【分析】
如图,根据平行线的性质可得,根据折叠的性质可得,再利用平角等于180°,据此求解即可.
【详解】
解:∵纸片两边平行,
∴
由折叠的性质可知,,
∴,
∴=62°.
故答案为:62°.
【点睛】
本题主要考查平行线的性质,折叠的性质,解此题的关键在于熟练掌握其知识点.
3、125
【解析】
【分析】
首先根据垂直定义可得∠ACD=90°,再根据余角的定义可得∠ACH的度数,然后再根据平行线的性质可得∠FBC+∠ACH=180°,进而可得答案.
【详解】
解:∵AC⊥CD,
∴∠ACD=90°,
∵∠DCH=35°,
∴∠ACH=90°﹣35°=55°,
∵EF∥GH,
∴∠FBC+∠ACH=180°,
∴∠FBC=180°﹣55°=125°,
故答案为:125.
【点睛】
此题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补.
4、3
【解析】
【分析】
根据平移的性质和线段的和差关系即可求得即平移的距离
【详解】
解:由平移的性质可知,平移的距离,
故答案为:3.
【点睛】
本题考查了平移的性质,掌握平移的性质是解题的关键.
5、 同角的余角相等 内错角相等,两直线平行
【解析】
【分析】
根据垂直的定义及平行线的判定定理即可填空.
【详解】
∵(已知),
∴(垂直的定义).
∴,
∵(已知),
∴(同角的余角相等),
∴(内错角相等,两直线平行).
故答案为:;;同角的余角相等;内错角相等,两直线平行.
【点睛】
此题考查了平行线的判定与性质,熟记 “内错角相等,两直线平行”是解题的关键.
三、解答题
1、2∠2;角平分线的定义;116;180;AD;BC;同旁内角互补,两直线平行
【解析】
【分析】
由AE平分∠BAC,AF平分∠CAD,利用角平分线的定义可得出∠BAC=2∠1,∠CAD=2∠2,结合∠EAF=∠1+∠2=58°可得出∠BAD=116°,由∠B=64°,∠BAD=116°,可得出∠BAD+∠B=180°,再利用“同旁内角互补,两直线平行”即可得出AD∥BC.
【详解】
解:∵AE平分∠BAC,AF平分∠CAD(已知),
∴∠BAC=2∠1,∠CAD=2∠2(角平分线的定义).
又∵∠EAF=∠1+∠2=58°,
∴∠BAD=∠BAC+∠CAD
=2(∠1+∠2)
=116°(等式性质).
又∵∠B=64°(已知),
∴∠BAD+∠B=180°.
∴AD∥BC(同旁内角互补,两直线平行).
故答案为:2∠2;角平分线的定义;116;180;AD;BC;同旁内角互补,两直线平行.
【点睛】
此题考查了角平分线的定义,角的计算,平行线的判定.正确掌握线段、角、相交线与平行线的知识是解题的关键,还需掌握推理能力.
2、见解析
【解析】
【分析】
先判定EF//AC,得到,,等量代换可得∠2=∠3,从而平分.
【详解】
证明:,,
,
,,
又,
∴∠3=∠A,
,
平分.
【点睛】
本题考查了平行线的判定与性质,角平分线的定义,熟练掌握平行线的判定与性质是解答本题的关键.
3、∠2;∠3;DE;内错角相等,两直线平行;两直线平行,同旁内角互补.
【解析】
【分析】
首先根据两直线平行,同位角相等可得到,然后根据角度之间的等量代换可得到,然后根据内错角相等,两直线平行可得到,最后根据两直线平行,同旁内角互补可得到∠B + ∠BDE = 180°.
【详解】
解:因为FGCD(已知),
所以∠1=∠2.
又因为∠1 = ∠3 (已知),
所以∠2 =∠3(等量代换).
所以(内错角相等,两直线平行),
所以∠B + ∠BDE = 180°(两直线平行,同旁内角互补).
故答案为:∠2;∠3;DE;内错角相等,两直线平行;两直线平行,同旁内角互补.
【点睛】
本题考查了平行线的判定与性质,解决本题的关键是准确区分平行线的判定与性质,并能熟练运用.
4、 (1)作图见解析
(2)
【解析】
【分析】
(1)过画直线 连接 以为端点画射线 再利用三角尺过作 垂足为 从而可得答案;
(2)先求解的面积为6,再利用 再解方程即可得到答案.
(1)
解:如图,
直线 线段射线 垂线段即为所求作的直线,线段,射线,垂线段.
(2)
解:
解得:
所以C点到的距离是
故答案为:
【点睛】
本题考查的是画直线,线段,射线,垂线段,以及点到直线的距离的含义,掌握“简单几何图形的作图及利用等面积法求解点到直线的距离”是解本题的关键.
5、见解析
【解析】
【分析】
根据∠ADE=∠B可判定DE∥BC,根据平行线的性质得到∠ACB=∠AED,再根据角平分线的定义推出∠ACD=∠AEF,即可判定EF∥CD.
【详解】
证明:(已知),
(同位角相等,两直线平行),
(两直线平行,同位角相等),
平分,平分(已知),
,(角平分线的定义),
(等量代换).
(同位角相等,两直线平行).
【点睛】
此题考查了平行线的判定与性质,以及角平分线的定义,熟练掌握平行线的判定与性质是解题的关键.
相关试卷
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试课后测评,共22页。试卷主要包含了下列说法中不正确的是,如图,,交于点,,,则的度数是,如图,下列条件中不能判定的是等内容,欢迎下载使用。
这是一份初中冀教版第七章 相交线与平行线综合与测试达标测试,共23页。试卷主要包含了下列命题不正确的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试精练,共23页。试卷主要包含了直线,下列说法正确的有等内容,欢迎下载使用。