初中数学第七章 相交线与平行线综合与测试练习
展开这是一份初中数学第七章 相交线与平行线综合与测试练习,共21页。试卷主要包含了下列说法中正确的有,直线等内容,欢迎下载使用。
冀教版七年级数学下册第七章相交线与平行线同步测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、如图,E在线段BA的延长线上,∠EAD=∠D,∠B=∠D,EFHC,连FH交AD于G,∠FGA的余角比∠DGH大16°,K为线段BC上一点,连CG,使∠CKG=∠CGK,在∠AGK内部有射线GM,GM平分∠FGC,则下列结论:①ADBC;②GK平分∠AGC;③∠DGH=37°;④∠MGK的角度为定值且定值为16°,其中正确结论的个数有( )
A.4个 B.3个 C.2个 D.1个
2、下列命题中是假命题的是( )
A.两直线平行,同位角相等 B.同旁内角互补,两直线平行
C.垂直于同一直线的两直线平行 D.对顶角相等
3、一把直尺与一块直角三角板按下图方式摆放,若,则( )
A.52° B.53° C.54° D.63°
4、下列说法中正确的有( )
(1)两条直线被第三条直线所截,同位角相等;
(2)若,则,,互余;
(3)相等的两个角是对顶角;
(4)从直线外一点到这条直线的垂线段,叫做这点到直线的距离.
A.个 B.个 C.个 D.个
5、如图,点O在直线BD上,已知,,则的度数为( ).
A.20° B.70° C.80° D.90°
6、如图,将军要从村庄A去村外的河边饮马,有三条路AB、AC、AD可走,将军沿着AB路线到的河边,他这样做的道理是( )
A.两点之间,线段最短
B.两点之间,直线最短
C.两点确定一条直线
D.直线外一点与直线上各点连接的所有线段中,垂线段最短
7、直线、、、如图所示.若∠1=∠2,则下列结论错误的是( )
A.ABCD B.∠EFB=∠3 C.∠4=∠5 D.∠3=∠5
8、如图,直线AB和CD相交于点O,下列选项中与∠AOC互为邻补角的是( )
A.∠BOC B.∠BOD C.∠DOE D.∠AOE
9、北京2022年冬奥会会徽是以汉字“冬”为灵感来源设计的(如图).下面四个图案中,可以通过平移图案得到的是( )
A. B. C. D.
10、如图,若AB∥CD,CD∥EF,那么BCE=( )
A.180°-2+1 B.180°-1-2 C.2=21 D.1+2
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,直线AB、CD相交于点E,EF⊥AB于E,若∠CEF=58°,则∠BED的度数为______.
2、在数学课上,王老师提出如下问题:
如图,需要在A,B两地和公路l之间修地下管道,请你设计一种最节省材料的修建方案.
小李同学的作法如下:
①连接AB;
②过点A作AC⊥直线l于点C;
则折线段B﹣A﹣C为所求.
王老师说:小李同学的方案是正确的.
请回答:该方案最节省材料的依据是垂线段最短和______.
3、如果两个角有一个公共顶点,并且其中一个角的两边是另一个角的两边的___________,那么这两个角互为对顶角.图中∠1的对顶角是______.
4、如图,直线,相交于点,,则__°.
5、如图,直线a∥b,A是直线a上的任意一点,AB⊥b,B是垂足,线段________的长就是a、b之间的距离.
三、解答题(5小题,每小题10分,共计50分)
1、如图,方格纸中每个小正方形的边长都是1,点P、A、B、C、D、E、F是方格纸中的格点(即小正方形的顶点).
(1)在图①中,过点P画出AB的平行线,过P点画出表示点P到直线AB距离的垂线段;
(2)在图②中,以线段AB、CD、EF的长为边长的三角形的面积等于 .
2、对于平面内的∠M和∠N,若存在一个常数k>0,使得∠M+k∠N=360°,则称∠N为∠M的k系补周角.如若∠M=90°,∠N=45°,则∠N为∠M的6系补周角.
(1)若∠H=120°,则∠H的4系补周角的度数为 °;
(2)在平面内AB∥CD,点E是平面内一点,连接BE,DE;
①如图1,∠D=60°,若∠B是∠E的3系补周角,求∠B的度数;
②如图2,∠ABE和∠CDE均为钝角,点F在点E的右侧,且满足∠ABF=n∠ABE,∠CDF=n∠CDE(其中n为常数且n>1),点P是∠ABE角平分线BG上的一个动点,在P点运动过程中,请你确定一个点P的位置,使得∠BPD是∠F的k系补周角,并直接写出此时的k值(用含n的式子表示).
3、如图,已知GH、MN分别平分∠AGE、∠DMF,且∠AGH=∠DMN,试说明ABCD的理由.
4、如图,已知∠ADC=∠ABC,DE、BF分别平分∠ADC和∠ABC,且DE∥BF,那么AB与DC平行吗?为什么?
5、补全下列推理过程:
如图,,,,试说明.
解:,(已知),
(垂直的定义).
( ).
( ).
(已知),
(等量代换).
( ).
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据平行线的判定定理得到AD∥BC,故①正确;由平行线的性质得到∠AGK=∠CKG,等量代换得到∠AGK=∠CGK,求得GK平分∠AGC;故②正确;根据题意列方程得到∠FGA=∠DGH=37°,故③正确;设∠AGM=α,∠MGK=β,得到∠AGK=α+β,根据角平分线的定义即可得到结论.
【详解】
解:∵∠EAD=∠D,∠B=∠D,
∴∠EAD=∠B,
∴AD∥BC,故①正确;
∴∠AGK=∠CKG,
∵∠CKG=∠CGK,
∴∠AGK=∠CGK,
∴GK平分∠AGC;故②正确;
∵∠FGA的余角比∠DGH大16°,
∴90°-∠FGA-∠DGH=16°,
∵∠FGA=∠DGH,
∴90°-2∠FGA=16°,
∴∠FGA=∠DGH=37°,故③正确;
设∠AGM=α,∠MGK=β,
∴∠AGK=α+β,
∵GK平分∠AGC,
∴∠CGK=∠AGK=α+β,
∵GM平分∠FGC,
∴∠FGM=∠CGM,
∴∠FGA+∠AGM=∠MGK+∠CGK,
∴37°+α=β+α+β,
∴β=18.5°,
∴∠MGK=18.5°,故④错误,
故选:B.
【点睛】
本题考查了平行线的判定和性质,角平分线的定义,对顶角性质,一元一次方程,正确的识别图形是解题的关键.
2、C
【解析】
【分析】
根据平行线的性质与判定,对顶角的性质,逐项分析判断即可
【详解】
解:A. 两直线平行,同位角相等,故该选项是真命题,不符合题意;
B. 同旁内角互补,两直线平行,故该选项是真命题,不符合题意;
C. 同一平面内,垂直于同一直线的两直线平行,故该选项是假命题,符合题意;
D. 对顶角相等,故该选项是真命题,不符合题意;
故选C
【点睛】
本题考查了真假命题的判断,掌握平行线的性质与判定,对顶角的性质是解题的关键.
3、B
【解析】
【分析】
过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.
【详解】
解:如图,过三角板的直角顶点作直尺两边的平行线,
∵直尺的两边互相平行,
∴,,
∴,
∴,
故选B.
【点睛】
本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.
4、A
【解析】
【分析】
两条平行直线被第三条直线所截时,同位角相等;两个和为的角互为余角;两相交线的对顶角相等;从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离.
【详解】
(1)两条直线被第三条直线所截,同位角不一定相等,故错误;
(2)两个角的和为,这两个角互为余角,故错误;
(3)相等的两个角不一定是对顶角,对顶角一定相等,故错误;
(4)从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离,故错误;
故选:A.
【点睛】
本题考查了同位角,余角,对顶角以及点到直线的距离.解题的关键在于正确理解各名词的定义.
5、B
【解析】
【分析】
直接利用垂直的定义结合互余得出答案.
【详解】
解:∵点O在直线DB上, OC⊥OA,
∴∠AOC=90°,
∵∠1=20°,
∴∠BOC=90°−20°=70°,
故选:B.
【点睛】
此题主要考查了垂线以及互余,正确把握相关定义是解题关键.
6、D
【解析】
【分析】
根据垂线段最短即可完成.
【详解】
根据直线外一点与直线上各点连接的所有线段中,垂线段最短,可知D正确
故选:D
【点睛】
本题考查了垂线的性质的简单应用,直线外一点与直线上各点连接的所有线段中,垂线段最短,掌握垂线段最短的性质并能运用于实际生活中是关键.
7、D
【解析】
【分析】
根据平行线的判定与性质、对顶角相等逐项判断即可.
【详解】
解:∵∠1=∠2,
∴AB∥CD,故A正确,不符合题意;
∴∠4=∠5,故C正确,不符合题意;
∵∠EFB与∠3是对顶角,
∴∠EFB=∠3,故B正确,
无法判断∠3=∠5,故D错误,符合题意,
故选:D.
【点睛】
本题考查平行线的判定与性质、对顶角相等,熟练掌握平行线的判定与性质是解答的关键.
8、A
【解析】
【详解】
解:图中与互为邻补角的是和,
故选:A.
【点睛】
本题考查了邻补角,熟练掌握邻补角的定义(两个角有一条公共边,且它们的另一边互为反向延长线,具有这种关系的两个角互为邻补角)是解题关键.
9、A
【解析】
【分析】
根据平移只改变图形的位置不改变图形的形状和大小解答.
【详解】
解:能通过平移得到的是A选项图案.
故选:A
【点睛】
本题考查了利用平移设计图案,熟记平移变换只改变图形的位置不改变图形的形状并准确识图是解题的关键.
10、A
【解析】
【分析】
根据两直线平行,内错角相等,同旁内角互补,这两条性质解答.
【详解】
∵AB∥CD,CD∥EF,
∴∠1=∠BCD,∠ECD+∠2=180°,
∴BCE=∠BCD+∠ECD=180°-2+1,
故选A.
【点睛】
本题考查了平行线的性质,正确选择合适的平行线性质是解题的关键.
二、填空题
1、32°
【解析】
略
2、两点之间线段最短
【解析】
【分析】
根据两点之间线段最短即可得到答案.
【详解】
解:由题意得可知:该方案最节省材料的依据是垂线段最短和两点之间线段最短,
故答案为:两点之间线段最短.
【点睛】
本题主要考查了垂线段最短和两点之间线段最短,熟知二者的定义是解题的关键.
3、 反向延长线 ∠1
【解析】
略
4、62
【解析】
【分析】
先求出∠DOB的值,然后根据对顶角相等求解即可.
【详解】
解:,
,
,
,
故答案为62.
【点睛】
本题考查了角的和差,对顶角相等,正确识图是解答本题的关键.
5、AB
【解析】
略
三、解答题
1、 (1)见解析
(2)4
【解析】
【分析】
(1)直接利用网格结合勾股定理得出答案;
(2)利用平移的性质得出以线段AB、CD、EF的长为边长的三角形的面积等于△ABM的面积,进而得出答案.
(1)
解:如图①所示:MN∥AB,PD⊥AB;
,
(2)
解:如图②所示:
以线段AB、CD、EF的长为边长的三角形的面积等于△ABM的面积为:
3×4-×1×2-×2×3-×2×4=4.
故答案为:4.
【点睛】
本题主要考查了应用设计与作图,正确平移线段是解题关键.
2、 (1)60
(2)①∠B=75°,②当BG上的动点P为∠CDE的角平分线与BG的交点时,满足∠BPD是∠F的k系补周角,此时k=2n.
【解析】
【分析】
(1)设∠H的4系补周角的度数为x°,根据新定义列出方程求解便可;
(2)①过E作EF∥AB,得∠B+∠D=∠BED,再由已知∠D=60°,∠B是∠E的3系补周角,列出∠B的方程,求得∠B便可;
②根据k系补周角的定义先确定P点的位置,再结合∠ABF=n∠ABE,∠CDF=n∠CDE求解k与n的关系即可求解.
(1)
解:设∠H的4系补周角的度数为x°,根据新定义得,120+4x=360,
解得,x=60,
∠H的4系补周角的度数为60°,
故答案为:60;
(2)
解:①过E作EF∥AB,如图1,
∴∠B=∠BEF,
∵AB∥CD,
∴EF∥CD,∠D=60°,
∴∠D=∠DEF=60°,
∵∠B+60°=∠BEF+∠DEF,
即∠B+60°=∠BED,
∵∠B是∠BED的3系补周角,
∴∠BED=360°-3∠B,
∴∠B+60°=360°-3∠B,
∴∠B=75°;
②当BG上的动点P为∠CDE的角平分线与BG的交点时,满足∠BPD是∠F的k系补周角,此时k=2n.
【点睛】
本题主要考查了平行线的性质与判定,角平分线的定义,理解题意是解题的关键.
3、见解析
【解析】
【分析】
根据角平分线的意义可得∠AGE=2∠AGH,∠DMF=2∠DMN,等量代换可得∠DMF=∠FGB,根据平行线的判定定理即可求得ABCD
【详解】
∵GH平分∠AGE,
∴∠AGE=2∠AGH
同理∠DMF=2∠DMN
∵∠AGH=∠DMN
∴∠AGE=∠DMF
又∵∠AGE=∠FGB
∴∠DMF=∠FGB
∴ABCD (同位角相等,两直线平行).
【点睛】
本题考查了平行线的判定定理,角平分线的意义,掌握平行线的判定定理是解题的关键.
4、AB∥DC,理由见解析.
【解析】
【分析】
根据平行线的性质推出∠DEA=∠FBA,再根据角平分线性质推出∠CDE=∠FBA,等量代换得到∠CDE=∠DEA,根据平行线的判定推出即可.
【详解】
解:AB∥DC,理由如下:
∵DE∥BF,
∴∠DEA=∠FBA,
∵∠ADC=∠ABC,DE、BF分别平分∠ADC和∠ABC,
∴∠CDE=∠CDA=∠CBA=∠FBA=∠DEA,
∴AB∥DC.
【点睛】
本题主要考查对平行线的性质和判定,角平分线性质等知识点的理解和掌握,能推出∠CDE=∠DEA是解此题的关键.
5、同位角相等,两直线平行;;两直线平行,同位角相等;;内错角相等,两直线平行
【解析】
【分析】
根据题意读懂推理过程中每一步的推理依据即可完成解答.
【详解】
,(已知),
(垂直的定义),
(同位角相等,两直线平行),
(两直线平行,同位角相等),
(已知),
(等量代换),
(内错角相等,两直线平行).
故答案为:同位角相等,两直线平行;;两直线平行,同位角相等;;内错角相等,两直线平行.
【点睛】
本题主要考查了平行线的判定与性质、垂直的定义等知识,关键是读懂推理过程,明确每一步的根据.
相关试卷
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试综合训练题,共21页。
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试当堂检测题,共21页。试卷主要包含了如图,一定能推出的条件是,下列命题不正确的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试当堂检测题,共21页。试卷主要包含了以下命题是假命题的是,下列A,如图,直线a等内容,欢迎下载使用。