初中数学冀教版七年级下册第六章 二元一次方程组综合与测试同步训练题
展开
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试同步训练题,共19页。试卷主要包含了用代入消元法解关于,某学校体育有场的环形跑道长,甲等内容,欢迎下载使用。
冀教版七年级下册第六章二元一次方程组章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、已知,则( )A. B. C. D.2、某宾馆准备正好用200元购买价格分别为50元和25元的两种换气扇(两种都要买),则可供宾馆选择的方案有( )A.3种 B.4种 C.5种 D.6种3、我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺!设绳索长x尺,竿长y尺,则符合题意的方程组是( )A. B. C. D.4、在下列各组数中,是方程组的解的是( )A. B. C. D.5、初一课外活动中,某兴趣小组80名学生自由组合分成12组,各组人数分别有5人、7人和8人三种情况,那么8人组最多可能有几组( )A.5组 B.6组 C.7组 D.8组6、用代入消元法解关于、的方程组时,代入正确的是( )A. B.C. D.7、一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大45,这样的两位数共有( )A.2个 B.3个 C.4个 D.5个8、某学校体育有场的环形跑道长,甲、乙分别以一定的速度练习长跑和骑自行车.同时同地出发,如果反向而行,那么他们每隔相遇一次.如果同向而行,那么每隔乙就追上甲一次,设甲的速度为,乙的速度为,则可列方程组为( )A. B. C. D.9、m为正整数,已知二元一次方程组有整数解则m2=( )A.4 B.1或4或16或25C.64 D.4或16或6410、用代入消元法解二元一次方程组,将①代入②消去x,可得方程( )A.(y+2)+2y=0 B.(y+2)﹣2y=0 C.x=x+2 D.x﹣2(x﹣2)=0第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、写出二元一次方程组 的所有正整数解________________.2、为了大力弘扬航天精神,科学普及航天知识,某校特意举行了“扬帆起航,逐梦九天”的知识竞赛.假设共16道题,评分标准如下:答对1题加3分,答错1题扣1分,不答记0分.已知小明不答的题比答错的题多2道,他的总分为28分,则小明答对了______道题.3、若是二元一次方程的解,则______.4、一年一度的南开校运会即将开幕,“向阳”班的全体同学正在操场上进行开幕式的队列编排.如果安排三个同学走在队列前方举班牌和班旗,则剩下的同学正好可以编排成每行5人的长方形方阵.如果不举班旗,只由班主任兼数学老师李老师举班牌,并再邀请语文,英语和物理三科的任课老师一起参加,则这三位任课老师和所有同学正好可以编排成每行6人的长方形方阵.已知“向阳”班的学生人数超过40人但又不多于80人,则“向阳”班共有学生______名.5、我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”这首诗的意思是说:“如果一间客房住七个人,那么就剩下七个人安排不下;如果一间客房住九个人,那么就空出一间客房.”问,现有客房多少间?房客多少人?设现有客房x间,房客y人,请你列出二元一次方程组:_____.三、解答题(5小题,每小题10分,共计50分)1、解方程组:(1)(2)2、解方程组:.3、六一前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,则1套文具和1套图书需多少元.4、解方程组:(1)(2)5、某工厂计划生产甲、乙两种产品,已知生产每件甲产品需要4吨A种原料和2吨B种原料,生产每件乙产品需要3吨A种原料和1吨B种原料.该厂现有A种原料120吨,B种原料50吨.(1)甲、乙两种产品各生产多少件,恰好使两种原料全部用完?(2)在(1)的条件下,计划每件甲产品的售价为3万元,每件乙产品的售价为5万元,可全部售出.根据市场变化情况,每件甲产品实际售价比计划上涨a%,每件乙产品实际售价比计划下降10%,结果全部出售的总销售额比原计划增加了3.5万元,求a的值. -参考答案-一、单选题1、B【解析】【分析】根据二元一次方程组的解法以及非负数的性质即可求出答案.【详解】解:由题意可知: 解得: ,故选:B.【点睛】本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.2、A【解析】【分析】设购买50元和25元的两种换气扇的数量分别为x,y,然后根据用200元购买价格分别为50元和25元的两种换气扇,列出方程求解即可.【详解】解:设购买50元和25元的两种换气扇的数量分别为x,y由题意得:,即,∵x、y都是正整数,∴当x=1时,y=6,当x=2时,y=4,当x=3时,y=2,∴一共有3种方案,故选A.【点睛】本题主要考查了二元一次方程的应用,解题的关键在于能够准确理解题意,列出方程求解.3、A【解析】【分析】根据题意可列出等量关系:绳长=竿长+5尺,竿长=绳长的一半+5尺,据此列方程即可.【详解】解:设绳索长x尺,竿长y尺,则故选:A.【点睛】本题考查由实际问题抽象出二元一次方程组,关键是正确理解题意,找出等量关系,由等量关系列方程.4、D【解析】【分析】根据二元一次方程组的解可把选项逐一代入求解即可.【详解】解:∵∴把代入方程①得:,代入②得:,所以该解不是方程组的解,故A选项不符合题意;把代入方程①得:,代入②得:,所以该解不是方程组的解,故B选项不符合题意;把代入方程①得:,代入②得:,所以该解不是方程组的解,故C选项不符合题意;把代入方程①得:,代入②得:,所以该解是方程组的解,故D选项符合题意;故选D.【点睛】本题主要考查二元一次方程组的解,熟练掌握二元一次方程组的解是解题的关键.5、B【解析】【分析】设8人组有x组,7人组由y组,则5人组有(12﹣x﹣y)组,根据题意得方程8x+7y+(12﹣x﹣y)×5=80,于是得到结论.【详解】解:设8人组有x组,7人组由y组,则5人组有(12﹣x﹣y)组,由题意得,8x+7y+(12﹣x﹣y)×5=80,∴3x+2y=20,当x=1时,y=,当x=2时,y=7,当x=4时,y=4,当x=6时,y=1,∴8人组最多可能有6组,故选B.【点睛】本题考查了二元一次方程的应用,正确的理解题意是解题的关键.6、A【解析】【分析】利用代入消元法把①代入②,即可求解.【详解】解:,把①代入②,得:.故选:A【点睛】本题主要考查了解二元一次方程组,解题的关键是熟练掌握二元一次方程组数为解法——代入消元法和加减消元法.7、C【解析】【分析】设原两位数的个位为 十位为 则这个两位数为 所以交换其个位数与十位数的位置,所得新两位数为 再列方程 再求解方程的符合条件的正整数解即可.【详解】解:设原两位数的个位为 十位为 则这个两位数为 交换其个位数与十位数的位置,所得新两位数为 则 整理得: 为正整数,且 或或或 所以这个两位数为: 故选C【点睛】本题考查的是二元一次方程的应用,二元一次方程的正整数解,理解题意,正确的表示一个两位数是解本题的关键.8、A【解析】【分析】此题中的等量关系有:①反向而行,则两人20秒共走250米;②同向而行,则50秒乙比甲多跑250米.【详解】解:①根据反向而行,得方程为30(x+y)=400;②根据同向而行,得方程为80(y-x)=400.那么列方程组,故选:A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,注意追及问题和相遇问题不同的求解方法是解题的关键.9、D【解析】【分析】把m看作已知数表示出方程组的解,由方程组的解为整数解确定出m的值,代入原式计算即可求出值.【详解】解:,①-②得:(m-3)x=10,解得:x=,把x=代入②得:y=,由方程组为整数解,得到m-3=±1,m-3=±5,解得:m=4,2,-2,8,由m为正整数,得到m=4,2,8则=4或16或64,故选:D.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.10、B【解析】【分析】把x﹣2y=0中的x换成(y+2)即可.【详解】解:用代入消元法解二元一次方程组,将①代入②消去x,可得方程(y+2)﹣2y=0,故选:B.【点睛】此题主要考查了解二元一次方程组,解方程组的基本思想是消元,基本方法是代入消元和加减消元.二、填空题1、 【解析】【分析】先把方程3x+y=10变形为 y=10-3x,再根据整除的特征,逐一尝试即可求解.【详解】解:∵3x+y=10,∴y=10-3x,∴原方程的所有正整数解是,,,故答案为:,,.【点睛】本题考查了二元一次方程的整数解,求二元一次方程的正整数解,可以先用含一个未知数的代数式表示另一个未知数,再根据整除的特征,逐一尝试即可.2、10【解析】【分析】根据总分=答对题数×3-答错题数×1+不答题数×0,设答对的题数为x道,答错的题数为y道,可列出方程组,求出解.【详解】解:设答对题数为x道,答错的题数为y道,则不答的题数为(y+2)道.由题意得:,解得:,∴答对了10道题,故答案为:10.【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.3、-1【解析】【分析】把代入即可求出a的值.【详解】把代入方程得:,解得:,故答案为:【点睛】本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.4、63【解析】【分析】设每行5人的队列有a列,每行6人的队列有b列,班级共x人,列方程组,得到队列的人数是30的倍数,进而得到队列人数为60人,据此求出答案.【详解】解:设每行5人的队列有a列,每行6人的队列有b列,班级共x人,则,∴队列的人数是5的倍数,也是6的倍数,即30的倍数,∵班级的学生人数超过40人但又不多于80人,∴队列人数为60人,∴班级人数为x=60+3=63人,故答案为:63.【点睛】此题考查了三元一次方程组的应用,倍数的确定,正确理解题意得到队列人数为30的倍数是解题的关键.5、【解析】【分析】设该店有客房x间,房客y人;根据一房七客多七客,一房九客一房空得出方程组即可.【详解】解:设该店有客房x间,房客y人;根据题意得:,故答案为:.【点睛】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.三、解答题1、 (1)(2)【解析】【分析】根据加减消元的方法求解即可.(1)解:,由①-②得:, ∴,把代入②,解得:,∴方程组的解为;(2)解:方程组整理得:,由①+②,得:,∴,把代入①,得:,∴方程组的解为.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2、【解析】【详解】解:,用②①,得:,解得:,将代入①,得:,解得:,方程组的解为.【点睛】此题考查了解二元一次方程组,正确掌握解方程组的方法:代入法和加减法并应用解决问题是解题的关键.3、1套文具和1套图书需48元【解析】【分析】设1套文具x元,1套图书y元,根据1套文具和3套图书需104元及3套文具和2套图书需116元,即可得出关于x、y的二元一次方程组,解方程即可解答.【详解】解:本题的等量关系:1套文具花费+3套图书花费=104元.3套文具花费+2套图书花费=116元.设一套文具x元,一套图书y元,由题意,得 : ,解得: ,∴x+y=48(元).答:1套文具和1套图书需48元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.4、 (1)(2)【解析】【分析】(1) 利用加减消元法求出解即可;(2) 方程组整理后,利用加减消元法求出解即可.(1)解:,①+②得,3x=9,即x=3,把x=3代入①得,y=2,则方程组的解为;(2)解:方程组整理得:,①×2+②得,y=5,把y=5代入①得,x=4,则方程组的解为【点睛】本题考查二元一次方程组的解法.关键是熟练掌握代入消元法和加减消元法的应用.5、 (1)甲生产15件,乙生产20件,恰好使两种原材料全部用完(2)【解析】【分析】(1)设甲生产x件,乙生产y件,根据题意得,,进行计算即可得;(2)用市场变化后的总销售额减去原计划的总销售额即可得.(1)解:设甲生产x件,乙生产y件,根据题意得,由②得,③将③代入①得: ,将代入③得:,解得则甲生产15件,乙生产20件,恰好使两种原材料全部用完.(2)解:根据题意得,.【点睛】本题考查了二元一次方程的应用,一元一次方程的应用,解题的关键是理解题意,找出等量关系.
相关试卷
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试同步练习题,共22页。试卷主要包含了学校计划用200元钱购买,在一次爱心捐助活动中,八年级,已知二元一次方程组则等内容,欢迎下载使用。
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试课时练习,共19页。试卷主要包含了有下列方程组,《孙子算经》记载等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试一课一练,共20页。试卷主要包含了方程组 消去x得到的方程是,已知是二元一次方程,则的值为等内容,欢迎下载使用。