数学七年级下册第六章 二元一次方程组综合与测试测试题
展开冀教版七年级下册第六章二元一次方程组章节测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、观察下列方程其中是二元一次方程是( )
A.5x﹣y=35 B.xy=16
C.2x2﹣1=0 D.3z﹣2(z+1)=6
2、用加减消元法解二元一次方程组时,下列方法中无法消元的是( )
A. B. C. D.
3、中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹价值x两,牛每头价值y两,根据题意可列方程组为( )
A. B. C. D.
4、李老师为学习进步的学生购买奖品,共用去42元购买单价为6元的和单价为12元的两种笔记本(购买本数均为正整数).你认为购买方案共有( )种.A.2 B.3 C.4 D.5
5、由方程组可以得出关于x和y的关系式是( )
A. B. C. D.
6、已知x=3,y=-2是方程2x+my=8的一个解,那么m的值是( )
A.-1 B.1 C.-2 D.2
7、《九章算术》“盈不足”一卷中有这样一个问题:“今有善田一亩,价三百;恶田七亩,价五百.今并买一顷,价钱一万.问善、恶田各几何?”意思是:“今有好田1亩,价值300钱;坏田7亩,价值500钱.今共买好、坏田1顷(1顷=100亩),总价值10000钱.问好、坏田各买了多少亩?”设好田买了x亩,坏田买了y亩,则下面所列方程组正确的是( )
A. B.
C. D.
8、《孙子算经》记载:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”大致意思是:今有若干人乘车,若每3人共乘一辆车,最终剩余2辆车;若每2人共乘一辆车,最终剩余9人无车可乘.问共有多少人?有多少辆车?若设有x人,有y辆车,根据题意,所列方程组正确的是( )
A. B. C. D.
9、二元一次方程组更适合用哪种方法消元( )
A.代入消元法 B.加减消元法
C.代入、加减消元法都可以 D.以上都不对
10、现有一批脐橙运往外地销售,A型车载满一次可运3吨,B型车载满一次可运4吨,现有脐橙31吨,计划同时租用A,B两种车型,一次运完且恰好每辆车都载满脐橙,租车方案共有( )
A.2种 B.3种 C.4种 D.5种
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、使二元一次方程两边____的两个未知数的值,叫二元一次方程的一组解.
2、若关于x,y的方程是二元一次方程,则的值是__________.
3、含有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做___________.
4、含有两个未知数,并且所含未知数的项的次数都是1的方程,叫做____.
判断一个方程是否为二元一次方程:
(1)二元一次方程的条件:①____方程;②只含____个未知数;③两个未知数系数都不为____;④含有未知数的项的次数都是____.
(2)二元一次方程的一般形式:ax+by=c(a≠0,b≠0).
5、某班组织20名同学去春游,同时租用A、B两种型号的车辆,A种车每辆有8个座位,B种车每辆有4个座位,要求租用的车辆不留空座,也不能超载,那么可以租用______辆A种车.
三、解答题(5小题,每小题10分,共计50分)
1、解方程组:
2、解方程组:.
3、已知方程组的解适合,求m的值.
4、解方程组:
5、(1)若在方程2x-y=的解中,x,y互为相反数,求xy的值.
(2)已知是方程组 的解,求m+n的值.
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据二元一次方程的定义解答即可.
【详解】
解:A、该方程符合二元一次方程的定义,符合题意.
B、该方程是二元二次方程,不符合题意.
C、该方程是一元二次方程,不符合题意.
D、该方程是一元一次方程,不符合题意.
故选:A.
【点睛】
本题主要考查了二元一次方程的定义,含有两个未知数且每个未知数的次数均为1的方程是二元一次方程.
2、D
【解析】
【分析】
利用加减消元法逐项判断即可.
【详解】
A. ,可以消去x,不符合题意;
B. ,可以消去y,不符合题意;
C. ,可以消去x,不符合题意;
D. ,无法消元,符合题意;
故选:D
【点睛】
本题考查了加减消元法,解题关键是明确加减消元的方法,把相同未知数的系数变成相同或互为相反数,然后准确进行判断.
3、A
【解析】
【分析】
直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别列出方程即可得出答案.
【详解】
解:设马每匹价值x两,牛每头价值y两,根据题意可列方程组为:
.
故选:A.
【点睛】
此题主要考查了二元一次方程组的应用,正确找到等量关系是解题关键.
4、B
【解析】
【分析】
设购买笔记本本,购买笔记本本,先建立二元一次方程,再根据均为正整数进行分析即可得.
【详解】
解:设购买笔记本本,购买笔记本本,
由题意得:,即,
因为均为正整数,
所以有以下三种购买方案:
①当,时,,
②当,时,,
③当,时,,
故选:B.
【点睛】
本题考查了二元一次方程的应用,正确建立方程是解题关键.
5、C
【解析】
【分析】
分别用x,y表示m,即可得到结果;
【详解】
由,得到,
由,得到,
∴,
∴;
故选C.
【点睛】
本题主要考查了二元一次方程组的化简,准确分析计算是解题的关键.
6、A
【解析】
【分析】
根据题意把x=3,y=-2代入方程2x+my=8,可得关于m的一元一次方程,解方程即可求出m的值.
【详解】
解:把x=3,y=-2代入方程2x+my=8,可得:
,解得:.
故选:A.
【点睛】
本题考查二元一次方程的解的定义以及解一元一次方程,注意掌握一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.
7、B
【解析】
【分析】
设他买了x亩好田,y亩坏田,根据总价=单价×数量,结合购买好田坏田一共是100亩且共花费了10000元,即可得出关于x,y的二元一次方程组,此题得解.
【详解】
解:设他买了x亩好田,y亩坏田,
∵共买好、坏田1顷(1顷=100亩).
∴x+y=100;
∵今有好田1亩,价值300钱;坏田7亩,价值500钱,购买100亩田共花费10000钱,
∴300x+y=10000.
联立两方程组成方程组得:.
故选:B.
【点睛】
本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.
8、B
【解析】
【分析】
根据“每3人乘一车,最终剩余2辆空车;若每2人同乘一车,最终剩下9人因无车可乘而步行”,即可得出关于x,y的二元一次方程组,此题得解.
【详解】
依题意,得:
故选:B
【点睛】
本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.
9、B
【解析】
【分析】
由题意直接根据加减消元法和代入消元法的特点进行判断即可.
【详解】
解:,
①②,得,消去了未知数,
即二元一次方程组更适合用加减法消元,
故选:.
【点睛】
本题考查解二元一次方程组,注意掌握解二元一次方程组的方法有:代入消元法和加减消元法两种.
10、B
【解析】
【分析】
设租A型车x辆,租B型车y辆,根据题意列方程得,正整数解即可.
【详解】
解:设租A型车x辆,租B型车y辆,
根据题意列方程得,
∴,
∵均为正整数,
∴是4的倍数,小于31的4的倍数有28,24,20,16,12,8,4,
∴=28,解得x=1,,
∴=24,解得,,
∴=20,解得,
∴=16,解得x=5,,
∴=12,解得,
∴=8,解得,
∴=4,解得x=9,,
∴租车方案有三种分别为:租A型车1辆,租B型车7辆或租A型车5辆,租B型车4辆或租A型车9辆,租B型车1辆.
故选择B.
【点睛】
本题考查二元一次方程的正整数解,掌握应用二元一次方程解应用题,利用二元一次方程的正整数解解决方案设计问题是解题关键.
二、填空题
1、相等
【解析】
略
2、0
【解析】
【分析】
根据二元一次方程的定义含有两个未知数并且含未知数的项的次数为1的方程是二元一次方程,建立方程组计算即可.
【详解】
解:∵关于,的方程是二元一次方程,
∴,
解得,
∴mn=0,
故答案为:0.
【点睛】
本题考查了二元一次方程的定义,二元一次方程组的解法,代数式的值,根据方程的定义构造方程组是解题的关键.
3、三元一次方程组
【解析】
略
4、 二元一次方程 整式 两 0 1
【解析】
略
5、1或2##2或1
【解析】
【分析】
设租用型车辆,型车辆,再列方程再求解方程的正整数解即可.
【详解】
解:设租用型车辆,型车辆,则
由题意得:为正整数,
或
所以租用型车1辆或2辆,
故答案为:1或2
【点睛】
本题考查的是二元一次方程的正整数解的应用,掌握“利用二次元一次方程的正整数解确定方案”是解本题的关键.
三、解答题
1、
【解析】
【分析】
利用加减法②①求解 再求解 从而可得答案.
【详解】
解:
②①得:
解得:
把代入①得:
所以方程组的解是:
【点睛】
本题考查的是二元一次方程组的解法,掌握“利用加减消元法解二元一次方程组”是解本题的关键.
2、
【解析】
【分析】
由①②相加消去y,与③组成关于x、 z的二元-次方程组, 进一步解二元一次方程组, 求得答案即可.
【详解】
解:
①+②得,3x+z=6④
③④组成二元一次方程组得,
解得,
代入①得,y=2,
∴原方程组的解为.
【点睛】
本题考查三元一次方程组的解法,有加减法和代入法两种,一般选用加减法解方程组较简单.
3、
【解析】
【分析】
方程组消去m得到关于x与y的方程,与已知方程联立成方程组,再利用加减消元法解题.
【详解】
解:方程组消去m得,x+4y=2,
联立得
①-②得,
-3y=6
y=-2
把y=-2代入①得,x=10
.
【点睛】
本题考查二元一次方程组的解、解二元一次方程组等知识,是基础考点,掌握相关知识是解题关键.
4、
【解析】
【分析】
消元求解的值,代回式解的值即可.
【详解】
解:得
解得:
将代入式得
解得:
∴方程组的解为.
【点睛】
本题考查了一元二次方程组.解题的关键在于正确的减法消元求解.
5、(1);(2)
【解析】
【分析】
(1)根据互为相反数把解代入方程得2x+x=,解一元一次方程,解得x=,再求xy的值.
(2)把解代入方程组求出二元一次方程组的解再求m+n即可.
【详解】
(1)∵x,y互为相反数,
∴y=-x,
将y=-x代入方程2x-y=中,
得2x+x=,
解得x=,
∴y=.
∴xy=.
(2)∵是方程组的解,
∴
解得
∴m+n=-1.
【点睛】
本题考查互为相反数,二元一次方程组的解,解一元一次方程,代数式的值,掌握互为相反数,二元一次方程组的解,解一元一次方程,代数式的值是解题关键.
初中冀教版第六章 二元一次方程组综合与测试一课一练: 这是一份初中冀教版第六章 二元一次方程组综合与测试一课一练,共18页。试卷主要包含了若是方程的解,则等于,二元一次方程组的解是,已知关于x等内容,欢迎下载使用。
冀教版七年级下册第六章 二元一次方程组综合与测试练习: 这是一份冀教版七年级下册第六章 二元一次方程组综合与测试练习,共18页。试卷主要包含了下列各式中是二元一次方程的是,已知方程组的解满足,则的值为,下列方程中,①x+y=6;②x,有下列方程组等内容,欢迎下载使用。
初中数学冀教版七年级下册第六章 二元一次方程组综合与测试同步练习题: 这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试同步练习题,共20页。试卷主要包含了已知,则,若是方程组的解,则的值为等内容,欢迎下载使用。