初中数学冀教版七年级下册第六章 二元一次方程组综合与测试习题
展开冀教版七年级下册第六章二元一次方程组章节测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、若关于x,y的二元一次方程组的解,也是二元一次方程x+2y=﹣1的解,则a的值为( )
A.2 B.1 C. D.0
2、下列各方程中,是二元一次方程的是( )
A.=y+5x B.3x+1=2xy C.x=y2+1 D.x+y=1
3、已知关于x,y的方程组的唯一解是,则关于m,n的方程组的解是( )
A. B. C. D.
4、在下列各组数中,是方程组的解的是( )
A. B. C. D.
5、有下列方程:①xy=1;②2x=3y;③;④x2+y=3; ⑤;⑥ax2+2x+3y=0 (a=0),其中,二元一次方程有( )
A.1个 B.2个 C.3个 D.4个
6、下列各组数中,是二元一次方程组的解的是( )
A. B. C. D.
7、有下列方程组:①;②;③;④ ;⑤,其中二元一次方程组有( )
A.1个 B.2个 C.3个 D.4个
8、如图,分别用火柴棍连续搭建等边三角形和正六边形,公共边只用一根火柴棍.如果搭建等边三角形和正六边形共用了2018根火柴,并且等边三角形的个数比正六边形的个数多7,那么连续搭建的等边三角形的个数是( )
A.291 B.292 C.293 D.294
9、二元一次方程的解可以是( )
A. B. C. D.
10、已知二元一次方程组则( )
A.6 B.4 C.3 D.2
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、若x2a﹣3+yb+2=3是二元一次方程,则a﹣b=__.
2、2021年11月2日,重庆市九龙坡区、长寿区分别新增1例新冠本土确诊.当疫情出现后,各级政府及有关部门高度重视,坚决阻断疫情传播.开州区赵家工业园区一家民营公司为了防疫需要,引进一条口罩生产线生产口罩,该产品有三种型号,通过市场调研后,按三种型号受消费者喜爱的程度分别对A型、B型、C型产品在成本的基础上分别加价20%,30%,45%出售(三种型号的成本相同).经过一个月的经营后,发现C型产品的销量占总销量的,且三种型号的总利润率为35%.第二个月,公司决定对A型产品进行升级,升级后A型产品的成本提高了25%,销量提高了20%;B型、C型产品的销量和成本均不变,且三种产品在第二个月成本基础上分别加价20%,30%,50%出售,则第二个月的总利润率为________.
3、若,则的值为______.
4、根据条件“比x的一半大3的数等于y的2倍”中的数量关系列出方程为 _____.
5、已知二元一次方程,用含的代数式示,则________.
三、解答题(5小题,每小题10分,共计50分)
1、养牛场原有30头大牛和15头小牛,1天约需用饲料675 kg;一周后又购进12头大牛和5头小牛,这时1天约需用饲料940 kg.饲养员李大叔估计每头大牛1天约需饲料18~20 kg,每头小牛1天约需饲料7 ~8 kg.你能否通过计算检验他的估计?
解:设平均每头大牛和每头小牛1天各需用饲料为xkg和ykg;
根据题意列方程:,
解得:___________
所以,每只大牛1天约需饲料20kg,每只小牛1天约需饲料5kg,饲养员李大叔对大牛的食量估计正确,对小牛的食量估计偏高.
2、解方程组:
(1)
(2)
3、某单位用汽车和火车向疫区用输两批防疫物资,具体运输情况如下表所示,求每辆汽车和每节火车车厢平均各装物资多少吨?
| 所用汽车数量(辆) | 所用火车车厢数量(节) | 运输物资总量(吨) |
第一批 | 5 | 2 | 140 |
第二批 | 3 | 4 | 224 |
4、解方程组:
5、对任意一个三位数(,,,a,b,c为整数),如果其个位上的数字与百位上的数字之和等于十位数上的数字,则称M为“万象数”,现将“万象数”M的个位作为十位,十位作为百位,百位作为个位,得到一个数N,并规定,我们称新数为M的“格致数”.例如154是一个“万象数”,将其个位作为十位,十位作为百位,百位作为个位,得到一个,,所以154的“格致数”为387.
(1)填空:当时,______;当时,______;
(2)求证:对任意的“万象数”M,其“格致数”都能被9整除;
(3)已知某“万象数”M的“格致数”为,既是72的倍数又是完全平方数,求出所有满足条件的“万象数”M.(完全平方数:如,,,,……,我们称0、1、4、9、16……叫完全平方数)
-参考答案-
一、单选题
1、D
【解析】
【分析】
解方程组,用a表示x,y,把x,y代入x+2y=﹣1中得到关于a的方程,解方程即可.
【详解】
解:,
①+②得
2x=2a+6,
x=a+3,
把代入①,得
a+3+y=-a+1,
y=-2a-2,
∵x+2y=﹣1
∴a+3+2(-2a-2)=-1,
∴a=0,
故选D.
【点睛】
本题考查了解二元一次方程组以及二元一次方程的解,解方程组,用a表示x,y,把x,y代入x+2y=﹣1中得到关于a的方程是解题的关键.
2、D
【解析】
【分析】
根据二元一次方程的定义逐一排除即可.
【详解】
解:A、=y+5x不是二元一次方程,因为不是整式方程;
B、3x+1=2xy不是二元一次方程,因为未知数的最高项的次数为2;
C、x=y2+1不是二元一次方程,因为未知数的最高项的次数为2;
D、x+y=1是二元一次方程.
故选:D.
【点睛】
此题主要考查了二元一次方程定义关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.
3、A
【解析】
【分析】
先将关于的方程组变形为,再根据关于的方程组的解可得,由此即可得出答案.
【详解】
解:关于的方程组可变形为,
由题意得:,
解得,
故选:A.
【点睛】
本题考查了求二元一次方程组的解,正确发现两个方程组之间的联系是解题关键.
4、D
【解析】
【分析】
根据二元一次方程组的解可把选项逐一代入求解即可.
【详解】
解:∵
∴把代入方程①得:,代入②得:,所以该解不是方程组的解,故A选项不符合题意;
把代入方程①得:,代入②得:,所以该解不是方程组的解,故B选项不符合题意;
把代入方程①得:,代入②得:,所以该解不是方程组的解,故C选项不符合题意;
把代入方程①得:,代入②得:,所以该解是方程组的解,故D选项符合题意;
故选D.
【点睛】
本题主要考查二元一次方程组的解,熟练掌握二元一次方程组的解是解题的关键.
5、C
【解析】
略
6、B
【解析】
【分析】
由题意直接利用加减消元法求出二元一次方程组的解即可得出答案.
【详解】
解:,
得③,
得④,
③+④得,解得,
将代入②得,解得,
所以是二元一次方程组的解.
故选:B.
【点睛】
本题考查解二元一次方程组,注意消元思想的运用,消元的方法有:代入消元法与加减消元法.
7、B
【解析】
略
8、C
【解析】
【分析】
设连续搭建三角形x个,连续搭建正六边形y个,根据搭建三角形和正六边形共用了2018根火柴棍,并且三角形的个数比正六边形的个数多7个,列方程组求解即可.
【详解】
解:设连续搭建等边三角形x个,连续搭建正六边形y个,
由题意,得,
解得.
故选C.
【点睛】
本题考查了二元一次方程组的应用及图形的变化类问题,解答本题的关键是读懂题意,仔细观察图形,找出合适的等量关系,列方程组求解.
9、A
【解析】
【分析】
把各个选项答案带进去验证是否成立即可得出答案.
【详解】
解:A、代入中,方程左边 ,边等于右边,故此选项符合题意;
B、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;
C、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;
D、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;
故选A.
【点睛】
本题主要考查二元一次方程的解的定义,熟知定义是解题的关键:使二元一次方程两边相等的一组未知数的值,叫做二元一次方程的一组解.
10、D
【解析】
【分析】
先把方程的②×5得到③,然后用③-①即可得到答案.
【详解】
解:,
把②×5得:③,
用③ -①得:,
故选D.
【点睛】
本题主要考查了二元一次方程组和代数式求值,解题的关键在于能够观察出所求式子与二元一次方程组之间的关系.
二、填空题
1、3
【解析】
【分析】
先根据二元一次方程的定义求出a、b的值,然后代入a﹣b计算即可.
【详解】
解:∵x2a﹣3+yb+2=3是二元一次方程,
∴2a﹣3=1,b+2=1,
∴a=2,b=﹣1,
则a﹣b=2﹣(﹣1)=2+1=3.
故答案为:3.
【点睛】
本题考查了二元一次方程的定义,熟练掌握二元一次方程组的定义是解答本题的关键.方程的两边都是整式,含有两个未知数,并且未知数的项的次数都是1次的方程叫做二元一次方程.
2、34%
【解析】
【分析】
由题意得出A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A型、B型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意列出方程组,解得;第二个月A产品成本为(1+25%)a=a,B、C的成本仍为a,A产品销量为(1+20%)x=x,B产品销量为y,C产品销量为z,则可求得第二个月的总利润率.
【详解】
解:由题意得:A型、B型、C型三种型号产品利润率分别为20%,30%,45%,
设A型、B型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,
由题意得:,
解得:,
第二个月A产品的成本提高了25%,成本为:(1+25%)a=a,B、C的成本仍为a,
A产品销量为(1+20%)x=x,B产品销量为y,C产品销量为z,
∴第二个季度的总利润率为:
=0.34
=34%.
故答案为:34%.
【点睛】
本题考查了利用三元一次方程组解实际问题,正确理解题意,设出未知数列出方程组是解题的关键.
3、##
【解析】
【分析】
根据绝对值和平方的非负性,列出方程组,可得,再代入,即可求解.
【详解】
解:∵,
∴ ,
解得: ,
.
故答案为:
【点睛】
本题主要考查了绝对值和平方的非负性,二元一次方程组的应用,求代数式的值,根据绝对值和平方的非负性,列出方程组是解题的关键.
4、x+3=2y
【解析】
【分析】
根据题中比x的一半大3的数表示为:,y的2倍表示为:,列出方程即可得.
【详解】
解:比x的一半大3的数表示为:,y的2倍表示为:,
综合可得:,
故答案为:.
【点睛】
题目主要考查二元一次方程的应用,理解题意,列出方程是解题关键.
5、
【解析】
【分析】
把看做已知数表示出即可.
【详解】
解:
方程,
解得:,
∴.
故答案为:.
【点睛】
本题考查了解二元一次方程,解题的关键是将看做已知数表示出.
三、解答题
1、
【解析】
略
2、(1);(2)
【解析】
【分析】
(1)利用加减法求解;
(2)先将方程整理,再利用加减法求出方程组的解.
【详解】
解:(1),
①×5+②,14x=-14,
解得x=-1,
把x=-1代入①,-2+y=-5,
解得y=-3,
∴原方程组的解是;
(2)方程组整理得
由①+②得:6x=18,
∴x=3,
把x=3代入①得:,
所以方程组的解为.
【点睛】
此题考查了解二元一次方程组,正确掌握解二元一次方程组的解法:代入消元法及加减消元法是解题的关键.
3、每辆汽车平均装物资8吨,每节火车车厢平均装物资50吨
【解析】
【分析】
设每辆汽车平均装物资x吨,每节火车车厢平均装物资y吨,列方程得,计算即可.
【详解】
解:设每辆汽车平均装物资x吨,每节火车车厢平均装物资y吨
根据题意得:,
解得: .
答:每辆汽车平均装物资8吨,每节火车车厢平均装物资50吨.
【点睛】
此题考查了二元一次方程组的实际应用,正确理解题意是解题的关键.
4、
【解析】
【分析】
原方程组化简后用代入消元法求解.
【详解】
解:原方程组化简,得
,
②×5+①,得
7x=-7,
∴x=-1,
把x=-1代入②,得
-1+y=2,
∴y=3,
∴.
【点睛】
本题考查了二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,灵活选择合适的方法是解答本题的关键.
5、 (1)
(2)证明见解析
(3)或.
【解析】
【分析】
(1)根据新定义分别求解即可;
(2)设“万象数”为 则其为 则再计算其“格致数”,再利用乘法的分配律进行变形即可证明结论;
(3)由是的倍数,可得是的倍数,结合的范围可得 从而得到或或或或 再求解方程符合条件的解,可得的值,结合是完全平方数,从而可得答案.
(1)
解:由新定义可得:
当时,
故答案为:
(2)
解:设“万象数”为 则其为
则
而
所以其“格致数”
所以其“格致数”都能被9整除.
(3)
解:是的倍数,
是的倍数,
是的倍数,
,,,a,b,c为整数,
或或或或
或或或或或
而,
的值为:或或或或或
是完全平方数,
的值为:或.
【点睛】
本题考查的是新定义运算的理解与运用,同时考查了二元一次方程的非负整数解问题,理解新定义,逐步分析与运算是解本题的关键.
初中冀教版第六章 二元一次方程组综合与测试一课一练: 这是一份初中冀教版第六章 二元一次方程组综合与测试一课一练,共18页。试卷主要包含了若是方程的解,则等于,二元一次方程组的解是,已知关于x等内容,欢迎下载使用。
冀教版七年级下册第六章 二元一次方程组综合与测试练习: 这是一份冀教版七年级下册第六章 二元一次方程组综合与测试练习,共18页。试卷主要包含了下列各式中是二元一次方程的是,已知方程组的解满足,则的值为,下列方程中,①x+y=6;②x,有下列方程组等内容,欢迎下载使用。
初中数学冀教版七年级下册第六章 二元一次方程组综合与测试习题: 这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试习题,共20页。

