冀教版第六章 二元一次方程组综合与测试课时训练
展开这是一份冀教版第六章 二元一次方程组综合与测试课时训练,共18页。试卷主要包含了《九章算术》中记载等内容,欢迎下载使用。
冀教版七年级下册第六章二元一次方程组章节测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、已知是方程的解,则k的值为( )
A.﹣2 B.2 C.4 D.﹣4
2、《孙子算经》是中国古代最重要的数学著作,其中记载:“今有木,不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺.木长几何?”译文:“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问木长多少尺?”设绳子长x尺,木长y尺,可列方程组为( ).
A. B.
C. D.
3、若关于x,y的二元一次方程组的解,也是二元一次方程x+2y=﹣1的解,则a的值为( )
A.2 B.1 C. D.0
4、m为正整数,已知二元一次方程组有整数解则m2=( )
A.4 B.1或4或16或25
C.64 D.4或16或64
5、将方程x+2y=11变形为用含x的式子表示y,下列变形中正确的是( )
A.y= B.y= C.x=2y﹣11 D.x=11﹣2y
6、《九章算术》中记载:“今有共买牛,人出六,不足四十;人出八,余四;问人数、牛价各几何?”其大意是:今有人合伙买牛,若每人出6钱,还差40钱;若每人出8钱,多余4钱,问合伙人数、牛价各是多少?设合伙人数为人,牛价为 钱,根据题意,可列方程组为( )
A. B. C. D.
7、已知关于x,y的二元一次方程组的解是,则a+b的值是( )
A.1 B.2 C.﹣1 D.0
8、若关于x,y的方程是二元一次方程,则m的值为( )
A.﹣1 B.0 C.1 D.2
9、佳佳坐在匀速行驶的车上,将每隔一段时间看到的里程碑上的数描述如下:
时刻 | 12:00 | 13:00 | 14:00 |
里程碑上的数 | 是一个两位数,数字之和为7 | 十位数字和个位数字与12:00时看到的刚好相反 | 比12:00看到的两位数中间多了个0 |
则12:00时看到的两位数是( )A.16 B.25 C.34 D.52
10、某宾馆准备正好用200元购买价格分别为50元和25元的两种换气扇(两种都要买),则可供宾馆选择的方案有( )
A.3种 B.4种 C.5种 D.6种
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、解二元一次方程组有___________和___________.
用一元一次方程解应用题的步骤是什么?
审题、___________、列方程、___________、检验并答.
2、根据条件“比x的一半大3的数等于y的2倍”中的数量关系列出方程为 _____.
3、我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”这首诗的意思是说:“如果一间客房住七个人,那么就剩下七个人安排不下;如果一间客房住九个人,那么就空出一间客房.”问,现有客房多少间?房客多少人?设现有客房x间,房客y人,请你列出二元一次方程组:_____.
4、为隆重庆祝建党一百周年,某学校欲购买,,三种花卉各100束装饰庆典会场.已知购买4束花卉,7束花卉,1束花卉,共用45元;购买3束花卉,5束花卉,1束花卉,共用35元.则学校购买这批装饰庆典会场的花卉一共要用__元.
5、在(1),(2),(3)这三组数值中,_______是方程x-3y=9的解,______是方程2x+y=4的解,_________是方程组的解.
三、解答题(5小题,每小题10分,共计50分)
1、解方程组:.
2、解方程组:
(1)
(2)
3、解方程组:.
4、为缓解电力供需矛盾,促进能源绿色低碳发展,某市推行峰谷分时电价政策.峰谷分时电价为:峰时(8:00~22:00)每度电0.55元,谷时(22:00~次日8:00)每度电0.3元.小颖家10月份用电120度,缴纳电费61元.
(1)求小颖家10月份,峰时、谷时各用电多少度?
(2)为响应节电政策,小颖11月份计划将20%的峰时用电转移至谷时,这样在她用电量保持不变的情况下能节省电费多少元?
5、养牛场原有30头大牛和15头小牛,1天约需用饲料675 kg;一周后又购进12头大牛和5头小牛,这时1天约需用饲料940 kg.饲养员李大叔估计每头大牛1天约需饲料18~20 kg,每头小牛1天约需饲料7 ~8 kg.你能否通过计算检验他的估计?
解:设平均每头大牛和每头小牛1天各需用饲料为xkg和ykg;
根据题意列方程:,
解得:___________
所以,每只大牛1天约需饲料20kg,每只小牛1天约需饲料5kg,饲养员李大叔对大牛的食量估计正确,对小牛的食量估计偏高.
-参考答案-
一、单选题
1、C
【解析】
【分析】
把代入是方程kx+2y=﹣2得到关于k的方程求解即可.
【详解】
解:把代入方程得:﹣2k+6=﹣2,
解得:k=4,
故选C.
【点睛】
本题主要考查二元一次方程的解,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.有解必代是解决此类题目的基本思路.
2、B
【解析】
【分析】
设绳子长x尺,长木长y尺,根据“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺”,可得出关于x,y的二元一次方程组.
【详解】
解:设绳子长x尺,长木长y尺,
依题意,得:,
故选:B.
【点睛】
本题考查了二元一次方程组的应用以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.
3、D
【解析】
【分析】
解方程组,用a表示x,y,把x,y代入x+2y=﹣1中得到关于a的方程,解方程即可.
【详解】
解:,
①+②得
2x=2a+6,
x=a+3,
把代入①,得
a+3+y=-a+1,
y=-2a-2,
∵x+2y=﹣1
∴a+3+2(-2a-2)=-1,
∴a=0,
故选D.
【点睛】
本题考查了解二元一次方程组以及二元一次方程的解,解方程组,用a表示x,y,把x,y代入x+2y=﹣1中得到关于a的方程是解题的关键.
4、D
【解析】
【分析】
把m看作已知数表示出方程组的解,由方程组的解为整数解确定出m的值,代入原式计算即可求出值.
【详解】
解:,
①-②得:(m-3)x=10,
解得:x=,
把x=代入②得:y=,
由方程组为整数解,得到m-3=±1,m-3=±5,
解得:m=4,2,-2,8,
由m为正整数,得到m=4,2,8
则=4或16或64,
故选:D.
【点睛】
此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.
5、B
【解析】
【详解】
解:,
,
.
故选:B.
【点睛】
本题考查等式的性质,解题的关键是熟练运用等式的性质,本题属于基础题型.
6、B
【解析】
【分析】
设合伙人数为人,牛价为 钱,根据“若每人出6钱,还差40钱;若每人出8钱,多余4钱,”列出方程组,即可求解.
【详解】
解:设合伙人数为人,牛价为 钱,根据题意得:
.
故选:B
【点睛】
本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.
7、B
【解析】
【分析】
将代入即可求出a与b的值;
【详解】
解:将代入得:
,
∴a+b=2;
故选:B.
【点睛】
本题考查二元一次方程组的解;熟练掌握方程组与方程组的解之间的关系是解题的关键.
8、C
【解析】
【分析】
根据二元一次方程的定义得出且,再求出答案即可.
【详解】
解:∵关于x,y的方程是二元一次方程,
∴且,
解得:m=1,
故选C.
【点睛】
本题考查了二元一次方程的定义,能熟记二元一次方程的定义是解此题的关键.
9、A
【解析】
【分析】
设小明12:00看到的两位数,十位数为x,个位数为y,根据车的速度不变和12:00时看到的两位数字之和为7,即可列出二元一次方程组,解方程组即可求解.
【详解】
设小明12:00看到的两位数,十位数为x,个位数为y,
由题意列方程组得:,
解得:,
∴12:00时看到的两位数是16.
故选:A.
【点睛】
本题考查二元一次方程组的应用,掌握里程碑上的数的表示是解题的关键.
10、A
【解析】
【分析】
设购买50元和25元的两种换气扇的数量分别为x,y,然后根据用200元购买价格分别为50元和25元的两种换气扇,列出方程求解即可.
【详解】
解:设购买50元和25元的两种换气扇的数量分别为x,y
由题意得:,即,
∵x、y都是正整数,
∴当x=1时,y=6,
当x=2时,y=4,当x=3时,y=2,
∴一共有3种方案,
故选A.
【点睛】
本题主要考查了二元一次方程的应用,解题的关键在于能够准确理解题意,列出方程求解.
二、填空题
1、 代入消元法 加减消元法 设未知数 解方程
【解析】
略
2、x+3=2y
【解析】
【分析】
根据题中比x的一半大3的数表示为:,y的2倍表示为:,列出方程即可得.
【详解】
解:比x的一半大3的数表示为:,y的2倍表示为:,
综合可得:,
故答案为:.
【点睛】
题目主要考查二元一次方程的应用,理解题意,列出方程是解题关键.
3、
【解析】
【分析】
设该店有客房x间,房客y人;根据一房七客多七客,一房九客一房空得出方程组即可.
【详解】
解:设该店有客房x间,房客y人;
根据题意得:,
故答案为:.
【点睛】
本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.
4、1500
【解析】
【分析】
列出两个三元一次方程,求出购买A、B、C三种花卉各1支的总价格,从而求出购买A,B,C三种花卉各100束的总价.
【详解】
解:设A种花朵元束,种花朵元束,种花朵元束,则
,
①②,得,③,
①③,得,④,
③④,得,,
(元.
故答案为:1500.
【点睛】
本题主要考查了三元一次方程组的实际应用,难点在于无法求出每一个未知数的数值,因而求出购买A、B、C三种花卉各1支的总价格是解决问题的关键,体现了数学的整体思想、化归思想,考查了学生的推理能力、计算能力、应用意识等.
5、 (1),(2) (1),(3) (1)
【解析】
【分析】
根据二元一次方程解的定义:使二元一次方程左右两边相等的一组未知数的值,分别将三组数值代入两个方程中求出各自的解,即可得到方程组的解.
【详解】
解:当时,方程的左边为:,方程左右两边相等,
∴是方程的解;
当时,方程的左边为:,方程左右两边相等,
∴是方程的解;
当时,方程的左边为:,方程左右两边不相等,
∴不是方程的解;
当时,方程的左边为:,方程左右两边相等,
∴是方程的解;
当时,方程的左边为:,方程左右两边不相等,
∴不是方程的解;
当时,方程的左边为:,方程左右两边相等,
∴不是方程的解;
∴方程组的解为;
故答案为:①(1),(2);②(1),(3);③(1).
【点睛】
本题主要考查了二元一次方程和二元一次方程组的解,数值二元一次方程解得定义是解题的关键.
三、解答题
1、
【解析】
【分析】
利用加减消元法求解即可.
【详解】
解:整理可得,
②×2,可得:4x﹣2y=72③,
③+①,可得:7x=84,
解得:x=12,
把x=12代入②,可得:24﹣y=36,
解得:y=﹣12,
∴方程组的解为.
【点睛】
本题考查了解二元一次方程组,解二元一次方程组的基本思路是消元,将二元方程转化为一元方程是解题的关键.
2、 (1)
(2)
【解析】
【分析】
(1)用加法消元法求解;
(2)用减法消元法求解.
(1)
∵
①+②得:,
,
将x=3代入①中得:,
得,
∴原方程组的解是.
(2)
将方程组变形为,
②,得③,
③-①,得,
把代入②,得.
∴原方程组的解是.
【点睛】
本题考查了二元一次方程组的解法,根据题目特点,灵活选择解题方法是解题的关键.
3、
【解析】
【分析】
根据题意整理后②①即可求出,把代入①得出,再求出即可.
【详解】
解:整理,得,
②①,得,
把代入①,得,
解得:,
所以方程组的解是.
【点睛】
本题考查解二元一次方程组,能把二元一次方程组转化成一元一次方程是解答此题的关键.
4、 (1)小颖家10月份峰时用电100度,谷时用电20度
(2)在她用电量保持不变的情况下能节省电费5元.
【解析】
【分析】
(1)设小颖家10月份峰时用电x度,谷时用电y度,根据“10月份用电120度,缴纳电费61元”列出二元一次方程组求解即可;
(2)计算出变化后的电费,用61相减即可.
(1)
设小颖家10月份峰时用电x度,谷时用电y度,根据题意得,
解得,
答:小颖家10月份峰时用电100度,谷时用电20度
(2)
=
=5(元)
答:在她用电量保持不变的情况下能节省电费5元.
【点睛】
此题主要考查了二元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
5、
【解析】
略
相关试卷
这是一份初中数学第六章 二元一次方程组综合与测试同步测试题,共20页。试卷主要包含了已知是二元一次方程,则的值为等内容,欢迎下载使用。
这是一份数学七年级下册第六章 二元一次方程组综合与测试精练,共20页。试卷主要包含了《孙子算经》记载,在一次爱心捐助活动中,八年级等内容,欢迎下载使用。
这是一份2021学年第六章 二元一次方程组综合与测试精练,共18页。