![2022年强化训练冀教版七年级下册第六章二元一次方程组专题训练试题(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12716871/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练冀教版七年级下册第六章二元一次方程组专题训练试题(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12716871/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练冀教版七年级下册第六章二元一次方程组专题训练试题(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12716871/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2020-2021学年第六章 二元一次方程组综合与测试课堂检测
展开
这是一份2020-2021学年第六章 二元一次方程组综合与测试课堂检测,共18页。试卷主要包含了若是方程组的解,则的值为,已知是方程的解,则k的值为等内容,欢迎下载使用。
冀教版七年级下册第六章二元一次方程组专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、如图,9个大小、形状完全相同的小长方形,组成了一个周长为46的大长方形,若设小长方形的长为,宽为,则可列方程为( )A. B.C. D.2、李老师为学习进步的学生购买奖品,共用去42元购买单价为6元的和单价为12元的两种笔记本(购买本数均为正整数).你认为购买方案共有( )种.A.2 B.3 C.4 D.53、下列各组数值是二元一次方程的解是( )A. B. C. D.4、一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大45,这样的两位数共有( )A.2个 B.3个 C.4个 D.5个5、若是方程组的解,则的值为( )A.16 B.-1 C.-16 D.16、《九章算术》中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元.若设共有人,该物品价值元,则根据题意可列方程组为( )A. B. C. D.7、《孙子算经》是中国古代最重要的数学著作,其中记载:“今有木,不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺.木长几何?”译文:“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问木长多少尺?”设绳子长x尺,木长y尺,可列方程组为( ).A. B.C. D.8、已知是方程的解,则k的值为( )A.﹣2 B.2 C.4 D.﹣49、用加减消元法解二元一次方程组时,下列方法中无法消元的是( )A. B. C. D.10、若关于x、y的二元一次方程的解,也是方程的解,则m的值为( )A.-3 B.-2 C.2 D.无法计算第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、用二元一次方程组解决实际问题的步骤:(1)___________:弄清题意和题目中的数量关系;(2)___________:用字母表示题目中的未知数;(3)___________:根据两个等量关系列出方程组;(4)___________:利用代入消元法或加减消元法解出未知数的值;(5)___________:检验所求的解是否符合实际意义,然后作答.2、在二元一次方程3x+y=12的解中,x和y是相反数的解是_______.3、为隆重庆祝建党一百周年,某学校欲购买,,三种花卉各100束装饰庆典会场.已知购买4束花卉,7束花卉,1束花卉,共用45元;购买3束花卉,5束花卉,1束花卉,共用35元.则学校购买这批装饰庆典会场的花卉一共要用__元.4、一个两位数,个位数字和十位数字的和是13,如果将个位数字和十位数字对调后得到的新数比原数大27,则原来的两位数是_________.5、若关于x,y的方程是二元一次方程,则的值是__________.三、解答题(5小题,每小题10分,共计50分)1、对于任意一个四位数,若千位上的数字与百位上的数字之和是十位上的数字与个位上的数字之和的2倍,则称是“2倍和数”.如,因为,所以3504是“2倍和数”;,因为,所以6824不是“2倍和数”.(1)判断6423,4816是否为“2倍和数”?并说明理由;(2)对于“2倍和数”,当百位上的数字是个位上的数字的3倍,且各数位上的数字之和能被9整除时,记.求的最大值和最小值.2、小明家需要用钢管做防盗窗,按设计要求,其中需要长为,且粗细相同的钢管分别为100根,32根,并要求这些用料不能是焊接而成的,现钢材市场的这种规格的钢管每根为.(1)试问一根长的圆钢管有哪些剪裁方法呢,请填写下空(余料作废).方法①:当只裁剪长为的用料时,最多可剪_______根.方法②:当先剪下1根时,余下部分最多能剪_______根长.方法③:当先剪下2根时,余下部分最多能剪________根长.(2)分别用(1)中的方法②和方法③各裁剪多少根长的钢管,才能刚好得到所需要的相应数量的材料.3、解方程组4、已知xm-n+1y与-2xn-1y3m-2n-5是同类项,求m和n的值.5、(1)解方程:;(2)解方程组: -参考答案-一、单选题1、A【解析】【分析】根据图形可知,大长方形的长=7个小长方形的宽=2小长方形的长,大长方形的宽=小长方形的长+小长方形的宽,由此即可列出方程.【详解】解:设小长方形的长为x,宽为y,由题意得: 或,故选A.【点睛】本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够正确理解题意和掌握长方形周长公式.2、B【解析】【分析】设购买笔记本本,购买笔记本本,先建立二元一次方程,再根据均为正整数进行分析即可得.【详解】解:设购买笔记本本,购买笔记本本,由题意得:,即,因为均为正整数,所以有以下三种购买方案:①当,时,,②当,时,,③当,时,,故选:B.【点睛】本题考查了二元一次方程的应用,正确建立方程是解题关键.3、D【解析】【分析】将选项中的解分别代入方程,使方程成立的即为所求.【详解】解:A.代入方程,,不满足题意;B.代入方程,,不满足题意;C.代入方程,,不满足题意;D.代入方程,,满足题意;故选:D.【点睛】本题考查了二元一次方程的解,熟练掌握二元一次方程的解与二元一次方程的关系是解题的关键.4、C【解析】【分析】设原两位数的个位为 十位为 则这个两位数为 所以交换其个位数与十位数的位置,所得新两位数为 再列方程 再求解方程的符合条件的正整数解即可.【详解】解:设原两位数的个位为 十位为 则这个两位数为 交换其个位数与十位数的位置,所得新两位数为 则 整理得: 为正整数,且 或或或 所以这个两位数为: 故选C【点睛】本题考查的是二元一次方程的应用,二元一次方程的正整数解,理解题意,正确的表示一个两位数是解本题的关键.5、C【解析】【分析】把x与y的值代入方程组,求出a+b与a-b的值,代入原式计算即可求出值.【详解】解:把代入方程组得,两式相加得;两式相差得:,∴,故选C.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.6、A【解析】【分析】根据题意可得等量关系:人数×8−3=物品价值;人数×7+4=物品价值,根据等量关系列出方程组即可.【详解】解:设有x人,物品价值y元,由题意得:故选:A.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.7、B【解析】【分析】设绳子长x尺,长木长y尺,根据“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺”,可得出关于x,y的二元一次方程组.【详解】解:设绳子长x尺,长木长y尺,依题意,得:,故选:B.【点睛】本题考查了二元一次方程组的应用以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.8、C【解析】【分析】把代入是方程kx+2y=﹣2得到关于k的方程求解即可.【详解】解:把代入方程得:﹣2k+6=﹣2,解得:k=4,故选C.【点睛】本题主要考查二元一次方程的解,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.有解必代是解决此类题目的基本思路.9、D【解析】【分析】利用加减消元法逐项判断即可.【详解】A. ,可以消去x,不符合题意;B. ,可以消去y,不符合题意;C. ,可以消去x,不符合题意;D. ,无法消元,符合题意;故选:D【点睛】本题考查了加减消元法,解题关键是明确加减消元的方法,把相同未知数的系数变成相同或互为相反数,然后准确进行判断.10、C【解析】【分析】将m看作已知数值,利用加减消元法求出方程组的解,然后代入求解即可得.【详解】解:,得:,解得:,将代入①可得:,解得:,∴方程组的解为:,∵方程组的解也是方程的解,代入可得,解得,故选:C.【点睛】题目主要考查解二元一次方程组求参数,熟练掌握解二元一次方程组的方法是解题关键.二、填空题1、 审题 设元 列方程组 解方程组 检验并答【解析】略2、【解析】【分析】根据x和y是相反数可得x=﹣y,然后代入原方程求解即可.【详解】解:∵x和y是相反数,∴x=﹣y,把x=﹣y代入原方程中,可得:﹣3y+y=12,解得:y=﹣6,∴x=6,∴在二元一次方程3x+y=12的解中,x和y是相反数的解是,故答案为:.【点睛】本题考查二元一次方程的解,理解方程的解和互为相反数的概念是解题关键.3、1500【解析】【分析】列出两个三元一次方程,求出购买A、B、C三种花卉各1支的总价格,从而求出购买A,B,C三种花卉各100束的总价.【详解】解:设A种花朵元束,种花朵元束,种花朵元束,则,①②,得,③,①③,得,④,③④,得,,(元.故答案为:1500.【点睛】本题主要考查了三元一次方程组的实际应用,难点在于无法求出每一个未知数的数值,因而求出购买A、B、C三种花卉各1支的总价格是解决问题的关键,体现了数学的整体思想、化归思想,考查了学生的推理能力、计算能力、应用意识等.4、58【解析】【分析】设原来的两位数的十位数字为x,个位数字为y,根据“个位数字和十位数字的和是13,如果将个位数字和十位数字对调后得到的新数比原数大27”,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入(10x+y)中即可求出结论.【详解】解:设原来的两位数的十位数字为x,个位数字为y,依题意得:,解得:,∴10x+y=58.故答案为:58.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.5、0【解析】【分析】根据二元一次方程的定义含有两个未知数并且含未知数的项的次数为1的方程是二元一次方程,建立方程组计算即可.【详解】解:∵关于,的方程是二元一次方程,∴,解得,∴mn=0,故答案为:0.【点睛】本题考查了二元一次方程的定义,二元一次方程组的解法,代数式的值,根据方程的定义构造方程组是解题的关键.三、解答题1、 (1)6423是“2倍和数”, 4816不是“2倍和数”,理由见解析;(2)最大值是3117,最小值是1107.【解析】【分析】(1)根据定义进行判断即可(2)设的个位上的数字为,十位上的数字为,则百位上的数字为,千位上的数字为,进而求得的各数位上的数字之和,根据,可得能被3整除,进而求二元一次方程的整数解即可,进而列出,即可求得的最大值和最小值.(1),∴6423是“2倍和数”,,∴4816不是“2倍和数”;(2)设的个位上的数字为,十位上的数字为,则百位上的数字为,千位上的数字为,,,,,为整数),的各数位上的数字之和为,各数位上的数字之和能被9整除,能被3整除,或,,,,的最大值是3117,最小值是1107.【点睛】本题考查了新定义,求二元一次方程的整数解,整除,理解新定义是解题的关键.2、(1)7,4,1(2)用方法②剪24根,方法③裁剪4根6m长的钢管.【解析】【分析】(1)由总数÷每份数=份数就可以直接得出结论; (2)设用方法②剪x根,方法③裁剪y根6m长的钢管,就有x+2y=32,4x+y=100,由此构成方程组求出其解即可.【详解】解:(1)①6÷0.8=7…0.4,因此当只裁剪长为0.8m的用料时,最多可剪7根; ②(6-2.5)÷0.8=4…0.3,因此当先剪下1根2.5m的用料时,余下部分最多能剪0.8m长的用料4根; ③(6-2.5×2)÷0.8=1…0.2,因此当先剪下2根2.5m的用料时,余下部分最多能剪0.8m长的用料1根; 故答案为:7,4,1. (2)设用方法②剪x根,方法③裁剪y根6m长的钢管,由题意,得, 解得:. 答:用方法②剪24根,方法③裁剪4根6m长的钢管;【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.3、【解析】【分析】把方程组整理后,利用加减消元法求解即可.【详解】解:原方程组可化为,②-①得:6y=12,解得:y=2,代入①中,解得:x=,∴方程组的解为.【点睛】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.4、【解析】【详解】解:因为xm-n+1y与-2xn-1y3m-2n-5是同类项,所以,整理,得:④-③,得2m=8,所以m=4.把m=4代入③,得2n=6,所以n=3.所以当时,xm-n+1y与-2xn-1y3m-2n-5是同类项。5、(1) ;(2)【解析】【分析】(1)先去分母,再去括号,然后移项合并同类项,即可求解;(2)由①+②×2可得 ,再代入②,即可求解.【详解】解:去分母得: ,去括号得: ,移项合并同类项得: ,解得: ;(2)由①+②×2得: ,解得: ,把代入②得: ,解得: ,∴原方程组的解为 .【点睛】本题主要考查了解一元一次方程和解二元一次方程组,熟练掌握一元一次方程和二元一次方程组的解法是解题的关键.
相关试卷
这是一份数学第六章 二元一次方程组综合与测试综合训练题,共15页。试卷主要包含了已知x,y满足,则x-y的值为,有下列方程组等内容,欢迎下载使用。
这是一份数学七年级下册第六章 二元一次方程组综合与测试同步达标检测题,共17页。试卷主要包含了已知方程组的解满足,则的值为,已知,则,二元一次方程组的解是,某学校体育有场的环形跑道长,甲等内容,欢迎下载使用。
这是一份2021学年第六章 二元一次方程组综合与测试复习练习题,共21页。