开学活动
搜索
    上传资料 赚现金

    2022年必考点解析冀教版七年级下册第六章二元一次方程组专题测评试卷(无超纲)

    2022年必考点解析冀教版七年级下册第六章二元一次方程组专题测评试卷(无超纲)第1页
    2022年必考点解析冀教版七年级下册第六章二元一次方程组专题测评试卷(无超纲)第2页
    2022年必考点解析冀教版七年级下册第六章二元一次方程组专题测评试卷(无超纲)第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中冀教版第六章 二元一次方程组综合与测试同步测试题

    展开

    这是一份初中冀教版第六章 二元一次方程组综合与测试同步测试题,共19页。试卷主要包含了已知,则等内容,欢迎下载使用。
    冀教版七年级下册第六章二元一次方程组专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  0分)一、单选题(10小题,每小题0分,共计0分)1、关于xy的二元一次方程组的解为正整数,则满足条件的所有整数a的和为(  )A.1 B.﹣1 C.2 D.﹣32、《孙子算经》记载:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”大致意思是:今有若干人乘车,若每3人共乘一辆车,最终剩余2辆车;若每2人共乘一辆车,最终剩余9人无车可乘.问共有多少人?有多少辆车?若设有x人,有y辆车,根据题意,所列方程组正确的是(       A. B. C. D.3、已知是二元一次方程,则的值为(       A. B.1 C. D.24、用代入消元法解二元一次方程组,将①代入②消去x,可得方程(       A.(y+2)+2y=0 B.(y+2)﹣2y=0 C.xx+2 D.x﹣2(x﹣2)=05、关于xy的方程组的解是,其中y的值被盖住了,不过仍能求出m,则m的值是(       A. B. C. D.6、已知,则(       A. B. C. D.7、已知关于xy的方程组的唯一解是,则关于mn的方程组的解是(       A. B. C. D.8、若方程x+y=3,x﹣2y=6和kx+y=7有公共解,则k的值是(  )A.1 B.﹣1 C.2 D.﹣29、初一课外活动中,某兴趣小组80名学生自由组合分成12组,各组人数分别有5人、7人和8人三种情况,那么8人组最多可能有几组(   A.5组 B.6组 C.7组 D.8组10、若都是方程axby=1的解,则ab的值是(       A.0 B.1 C.2 D.3第Ⅱ卷(非选择题  100分)二、填空题(5小题,每小题4分,共计20分)1、二元一次方程组的解为 _____.2、有这样一道题:“栖树一群鸦,鸦树不知数;三只栖一树,五只没去处;五只栖一树,闲了一棵树;请你动动脑,算出鸦树数.”前三句的意思是:一群乌鸦在树上栖息,若每棵树上栖息3只,那么有5只没处栖息;若每棵树上栖息5只,那么有一棵树上没有乌鸦.请你动动脑,该问题中乌鸦有_________只.3、2021年11月2日,重庆市九龙坡区、长寿区分别新增1例新冠本土确诊.当疫情出现后,各级政府及有关部门高度重视,坚决阻断疫情传播.开州区赵家工业园区一家民营公司为了防疫需要,引进一条口罩生产线生产口罩,该产品有三种型号,通过市场调研后,按三种型号受消费者喜爱的程度分别对A型、B型、C型产品在成本的基础上分别加价20%,30%,45%出售(三种型号的成本相同).经过一个月的经营后,发现C型产品的销量占总销量的,且三种型号的总利润率为35%.第二个月,公司决定对A型产品进行升级,升级后A型产品的成本提高了25%,销量提高了20%;B型、C型产品的销量和成本均不变,且三种产品在第二个月成本基础上分别加价20%,30%,50%出售,则第二个月的总利润率为________.4、使二元一次方程两边____的两个未知数的值,叫二元一次方程的一组解.5、若是方程x+ay=3的一个解,则a的值为 ______.三、解答题(5小题,每小题10分,共计50分)1、六年级学生若干人报名参加课外活动小组,男女生人数之比为4:3,后来又报了15名女生,这时女生人数恰好是男生人数的2倍,求最初报名时男生与女生各有多少人?2、解方程组时,两位同学的解法如下:解法一:由①﹣②,得3x=﹣3解法二:由②得3x+(x﹣2y)=5③①代入③得3x+2=5(1)反思:上述两种解题过程中你发现解法     的解题过程有错误(填“一”或“二”);解二元一次方程组的基本思想     (2)请选择一种你喜欢的方法解此方程组.3、例3.林芳、向民、艳君三位同学去商店买文具用品,林芳说:“我买了4支水笔,2本笔记本,10本作文本共用了19元.”向民说:“我买了2支水笔,3本笔记本,10本练习本共用了20元,”艳君说:“我买了12本练习本,8本作文本共用了10元;作文本与练习本的价格是一样哦!”请根据以上内容,求出笔记本,水笔,练习本的价格.4、我国古代民间把正月正、二月二、三月三、五月五、六月六、七月七、九月九这“七重”列为吉庆日;“七”在生活中表现为时间的阶段性,比如一周有“七天” ,在数的学习过程中,有一类自然数具有的特性也和“七”有关.定义:对于四位自然数,若其千位数字与个位数字之和等于7,百位数字与十位数字之和也等于7,则称这个四位自然数为“七巧数”.例如:3254是“七巧数”,因为,所以3254是“七巧数”;1456不是“七巧数”,因为,但,所以1456不是“七巧数”.(1)最大的“七巧数”是   ,最小的“七巧数”是   (2)若将一个“七巧数” 的个位数字和千位数字交换位置,十位数字和百位数字交换位置得到一个新的“七巧数” ,并记,求证:无论取何值,为定值,并求出这个值;(3)若是一个“七巧数”,且的百位数字加上个位数字的和,是千位数字减去十位数字的差的2倍,请求出满足条件的所有“七巧数” 5、用适当的方法解下列方程组: -参考答案-一、单选题1、C【解析】【分析】先求出方程组的解,由方程组的解为正整数分析得出a值.【详解】解:解方程组,得∵方程组的解为正整数,a=0时,a=2时,∴满足条件的所有整数a的和为0+2=2.故选:C.【点睛】此题考查了已知二元一次方程组的解求参数,解题的关键是求出方程组的解,由方程组解的情况分析得到a的值.2、B【解析】【分析】根据“每3人乘一车,最终剩余2辆空车;若每2人同乘一车,最终剩下9人因无车可乘而步行”,即可得出关于x,y的二元一次方程组,此题得解.【详解】依题意,得:故选:B【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.3、C【解析】【分析】根据二元一次方程的定义,即含有两个未知数,且未知数的次数均为1,即可求解.【详解】解:∵是二元一次方程, ,且解得:故选:C【点睛】本题主要考查了二元一次方程的定义,解题的关键是熟练掌握含有两个未知数,且未知数的次数均为1.4、B【解析】【分析】x﹣2y=0中的x换成(y+2)即可.【详解】解:用代入消元法解二元一次方程组,将代入消去x可得方程(y+2)﹣2y0故选:B【点睛】此题主要考查了解二元一次方程组,解方程组的基本思想是消元,基本方法是代入消元和加减消元.5、A【解析】【分析】x=1代入方程组,求出y,再将y的值代入1+my=0中,得到m的值.【详解】解:把x=1代入方程组,可得,解得y=2,y=2代入1+my=0中,得m=故选:A.【点睛】此题考查了利用二元一次方程组的解求方程中的字母值,正确理解方程组的解的定义是解题的关键.6、B【解析】【分析】根据二元一次方程组的解法以及非负数的性质即可求出答案.【详解】解:由题意可知: 解得:故选:B.【点睛】本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.7、A【解析】【分析】先将关于的方程组变形为,再根据关于的方程组的解可得,由此即可得出答案.【详解】解:关于的方程组可变形为由题意得:解得故选:A.【点睛】本题考查了求二元一次方程组的解,正确发现两个方程组之间的联系是解题关键.8、C【解析】【分析】先求出的解,然后代入kx+y=7求解即可.【详解】解:联立②-①,得-3y=3,y=-1,y=-1代入①,得x-1=3x=4,代入kx+y=7得:4k﹣1=7,k=2,故选:C.【点睛】本题考查了解二元一次方程组,解二元一次方程组的基本思路是消元,二元方程转化为一元方程是解题的关键.9、B【解析】【分析】设8人组有x组,7人组由y组,则5人组有(12﹣xy)组,根据题意得方程8x+7y+(12﹣xy×5=80,于是得到结论.【详解】解:设8人组有x组,7人组由y组,则5人组有(12﹣xy)组,由题意得,8x+7y+(12﹣xy)×5=80,∴3x+2y=20,x=1时,yx=2时,y=7,x=4时,y=4,x=6时,y=1,∴8人组最多可能有6组,故选B.【点睛】本题考查了二元一次方程的应用,正确的理解题意是解题的关键.10、C【解析】【分析】代入axby=1,建立方程组,再解方程组即可.【详解】解: 都是方程axby=1的解, 解②得: 代入①得: 故选C【点睛】本题考查的是二元一次方程的解,二元一次方程组的解法,掌握“利用方程的解建立新的二元一次方程”是解本题的关键.二、填空题1、【解析】【分析】利用加减消元法解二元一次方程组即可得到答案.【详解】解:用①+②得:,解得代入①中得:,解得∴方程组的解为【点睛】本题主要考查了解二元一次方程组,解题的关键在于能够熟练掌握加减消元法.2、20【解析】【分析】设乌鸦有x只,树y棵,直接利用若每棵树上栖息3只,那么有5只没处栖息;若每棵树上栖息5只,那么有一棵树上没有乌鸦列出方程组,进而得出答案.【详解】解:设乌鸦x只,树y棵.依题意可列方程组:解得, 所以,乌鸦有20只故答案为:20.【点睛】此题主要考查了二元一次方程组的应用,正确得出方程组是解题关键.3、34%【解析】【分析】由题意得出A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A型、B型、C型三种型号产品原来的成本为aA产品原销量为xB产品原销量为yC产品原销量为z,由题意列出方程组,解得;第二个月A产品成本为(1+25%)a=aBC的成本仍为aA产品销量为(1+20%)x=xB产品销量为yC产品销量为z,则可求得第二个月的总利润率.【详解】解:由题意得:A型、B型、C型三种型号产品利润率分别为20%,30%,45%,A型、B型、C型三种型号产品原来的成本为aA产品原销量为xB产品原销量为yC产品原销量为z由题意得:解得:第二个月A产品的成本提高了25%,成本为:(1+25%)a=aBC的成本仍为aA产品销量为(1+20%)x=xB产品销量为yC产品销量为z∴第二个季度的总利润率为:=0.34=34%.故答案为:34%.【点睛】本题考查了利用三元一次方程组解实际问题,正确理解题意,设出未知数列出方程组是解题的关键.4、相等【解析】5、【解析】【分析】代入方程可得一个关于的一元一次方程,解方程即可得.【详解】解:由题意,将代入得:解得故答案为:【点睛】本题考查了二元一次方程的解、一元一次方程,掌握理解二元一次方程的解的定义(一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解)是解题关键.三、解答题1、最初报名时男生有12人,女生有9人.【解析】【分析】设最初报名时女生有x人,男生有y人,由题意:男女生人数之比为4:3,后来又报了15名女生,这时女生人数恰好是男生人数的2倍,列出方程组,解之即可.【详解】解:设最初报名时女生有x人,男生有y人,依题意,得:解得:答:最初报名时男生有12人,女生有9人.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.2、 (1)一,消元;(2)【解析】【分析】(1)上述两种解题过程中解法一的解题过程有错误,解二元一次方程组的基本思想消元思想;(2)用②①,消去,求出,再把的值代入①即可求出(1)解:上述两种解题过程中解法一的解题过程有错误,解二元一次方程组的基本思想消元思想;故答案为:一;消元;(2)解:②①得:,解得代入①得:,解得所以方程组的解为:【点睛】此题考查了解二元一次方程组,解题的关键是掌握消元的思想和消元的方法,消元的方法有:代入消元法与加减消元法.3、笔记本每本的价格是4元,水笔每支1.5元,练习本每本0.5元.【解析】【分析】设笔记本每本的价格是x元,水笔每支y元,练习本或作文本每本的价格为z元,根据林芳、向民、艳君三个人的话可以建立三个方程,从而构成三元一次方程组,求出其解即可.【详解】设笔记本每本的价格是x元,水笔每支y元,练习本或作文本每本的价格为z元,由题意得 解得 答:笔记本每本的价格是4元,水笔每支1.5元,练习本每本0.5元.【点睛】本题考查了列三元一次方程组解实际问题的运用,三元一次方程组的解法的运用,解答时找准等量关系建立方程是关键.4、 (1)7700,1076(2)证明见解析,7777(3)5612,6341,7070【解析】【分析】( 1)根据“七巧数”的定义即可求解;( 2)设的个位数字为,十位数字为,则百位数字为,千位数字,依此可求,进一步可求( 3)设的千位数字为,百位数字为,则十位数字为,个位数字为,根据的百位数字加上个位数字的和,是千位数字减去十位数字的差的2倍,依此可得,再根据方程正整数解进行讨论即可求解.(1)解:最大的“七巧数”是:7700,最小的“七巧数”是:1076,故答案为:7700,1076;(2)证明:设的个位数字为,十位数字为,则百位数字为,千位数字由题意得,故无论取何值,为定值,为7777;(3)的千位数字为,百位数字为,则十位数字为,个位数字为由题意得, ,且为整数,时,则时,则时,则满足条件的所有“七巧数” 为:5612,6341,7070.【点睛】本题考查的是新定义情境下的整式的加减运算,二元一次方程的正整数解问题,理解新定义,准确的列出代数式并合并同类项,列出二元一次方程并求解其符合条件的正整数解都是解本题的关键.5、【解析】【分析】根据题意利用加减消元法,①×3+②,消去未知数y,求出未知数x的值,再代入其中一个方程求出y的值即可.【详解】解:②,得,解得代入①,得,解得故方程组的解为【点睛】本题考查解二元一次方程组,能把二元一次方程组转化成一元一次方程是解答此题的关键. 

    相关试卷

    初中数学冀教版八年级下册第二十章 函数综合与测试课后练习题:

    这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课后练习题,共22页。试卷主要包含了函数的自变量x的取值范围是,如图,点A的坐标为,下图中表示y是x函数的图象是等内容,欢迎下载使用。

    2021学年第六章 二元一次方程组综合与测试一课一练:

    这是一份2021学年第六章 二元一次方程组综合与测试一课一练,共19页。

    初中数学冀教版七年级下册第六章 二元一次方程组综合与测试课时训练:

    这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试课时训练,共16页。试卷主要包含了若是方程的解,则等于,若关于x等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map