![2022年必考点解析冀教版七年级下册第六章二元一次方程组专题测评练习题第1页](http://img-preview.51jiaoxi.com/2/3/12716749/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析冀教版七年级下册第六章二元一次方程组专题测评练习题第2页](http://img-preview.51jiaoxi.com/2/3/12716749/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析冀教版七年级下册第六章二元一次方程组专题测评练习题第3页](http://img-preview.51jiaoxi.com/2/3/12716749/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版七年级下册第六章 二元一次方程组综合与测试练习题
展开
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试练习题,共18页。试卷主要包含了若是方程的解,则等于,若是方程组的解,则的值为,某学校体育有场的环形跑道长,甲等内容,欢迎下载使用。
冀教版七年级下册第六章二元一次方程组专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、关于x,y的方程是二元一次方程,则m和n的值是( )A. B. C. D.2、用代入消元法解关于、的方程组时,代入正确的是( )A. B.C. D.3、某污水处理厂库池里现有待处理的污水m吨.另有从城区流入库池的待处理污水(新流入污水按每小时n吨的定流量增加).若该厂同时开动2台机组,需30小时处理完污水;若同时开动3台机组,需15小时处理完污水.若5小时处理完污水,则需同时开动的机组数为( )A.6台 B.7台 C.8台 D.9台4、若是方程的解,则等于( )A. B. C. D.5、若是方程组的解,则的值为( )A.16 B.-1 C.-16 D.16、若为都是方程ax+by=1的解,则a+b的值是( )A.0 B.1 C.2 D.37、某校九年级学生到礼堂开会,若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳.若设学生人数为,长凳数为,由题意列方程组为( )A. B.C. D.8、某宾馆准备正好用200元购买价格分别为50元和25元的两种换气扇(两种都要买),则可供宾馆选择的方案有( )A.3种 B.4种 C.5种 D.6种9、某学校体育有场的环形跑道长,甲、乙分别以一定的速度练习长跑和骑自行车.同时同地出发,如果反向而行,那么他们每隔相遇一次.如果同向而行,那么每隔乙就追上甲一次,设甲的速度为,乙的速度为,则可列方程组为( )A. B. C. D.10、已知方程组的解满足,则的值为( )A.7 B. C.1 D.第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、2、解二元一次方程组有___________和___________.用一元一次方程解应用题的步骤是什么?审题、___________、列方程、___________、检验并答.3、一支部队第一天行军4小时,第二天行军5小时,两天共行军98km,且第一天比第二天少走2km,设第一天行军的平均速度为x km/h,第二天行军的平均速度为y km/h,可列方程组______.4、通过“___________”或“___________”进行消元,把“三元”转化为“___________ ”,使解三元一次方程组转化为解___________,进而再转化为解___________.5、已知是方程组的解,则计算的值是______.三、解答题(5小题,每小题10分,共计50分)1、某工厂计划生产甲、乙两种产品,已知生产每件甲产品需要4吨A种原料和2吨B种原料,生产每件乙产品需要3吨A种原料和1吨B种原料.该厂现有A种原料120吨,B种原料50吨.(1)甲、乙两种产品各生产多少件,恰好使两种原料全部用完?(2)在(1)的条件下,计划每件甲产品的售价为3万元,每件乙产品的售价为5万元,可全部售出.根据市场变化情况,每件甲产品实际售价比计划上涨a%,每件乙产品实际售价比计划下降10%,结果全部出售的总销售额比原计划增加了3.5万元,求a的值.2、解方程组:.3、解方程组:(1)(2)4、用适当的方法解下列方程组.5、解方程组(1)(2) -参考答案-一、单选题1、C【解析】【分析】根据二元一次方程组的定义,得到关于的二元一次方程组,然后求解即可.【详解】解:由题意可得:,即①+②得:,解得将代入①得,故故选:C【点睛】此题考查了二元一次方程组的定义以及加减消元法求解二元一次方程组,解题的关键是理解二元一次方程组的定义以及掌握二元一次方程组的求解方法.2、A【解析】【分析】利用代入消元法把①代入②,即可求解.【详解】解:,把①代入②,得:.故选:A【点睛】本题主要考查了解二元一次方程组,解题的关键是熟练掌握二元一次方程组数为解法——代入消元法和加减消元法.3、B【解析】【分析】设同时开动x台机组,每台机组每小时处理a吨污水,根据“如果同时开动2台机组要30小时刚好处理完污水,同时开动3台机组要15小时刚好处理完污水”,即可得出关于m,n的二元一次方程组,解之即可得出m,n的值(用含a的代数式表示),再由5小时内将污水处理完毕,即可得出关于关于x的一元一次方程,解之可得出结论.【详解】解:设同时开动x台机组,每台机组每小时处理a吨污水,依题意,得,解得:,∵5ax=30a+5a,∴x=7.答:要同时开动7台机组.故选:B.【点睛】本题考查的是用二元一次方程组来解决实际问题,正确的理解题意是解题的关键.4、B【解析】【分析】把代入到方程中得到关于k的方程,解方程即可得到答案.【详解】解:∵是方程的解,∴,∴,故选B.【点睛】本题主要考查了二元一次方程解的定义和解一元一次方程方程,熟知二元一次方程的解得定义是解题的关键.5、C【解析】【分析】把x与y的值代入方程组,求出a+b与a-b的值,代入原式计算即可求出值.【详解】解:把代入方程组得,两式相加得;两式相差得:,∴,故选C.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.6、C【解析】【分析】把为代入ax+by=1,建立方程组,再解方程组即可.【详解】解: 为都是方程ax+by=1的解, 解②得: 把代入①得: 故选C【点睛】本题考查的是二元一次方程的解,二元一次方程组的解法,掌握“利用方程的解建立新的二元一次方程”是解本题的关键.7、B【解析】【分析】设学生人数为x,长凳数为y,然后根据若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳,列出方程即可.【详解】解:设学生人数为x,长凳数为y,由题意得:,故选B.【点睛】本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够准确理解题意.8、A【解析】【分析】设购买50元和25元的两种换气扇的数量分别为x,y,然后根据用200元购买价格分别为50元和25元的两种换气扇,列出方程求解即可.【详解】解:设购买50元和25元的两种换气扇的数量分别为x,y由题意得:,即,∵x、y都是正整数,∴当x=1时,y=6,当x=2时,y=4,当x=3时,y=2,∴一共有3种方案,故选A.【点睛】本题主要考查了二元一次方程的应用,解题的关键在于能够准确理解题意,列出方程求解.9、A【解析】【分析】此题中的等量关系有:①反向而行,则两人20秒共走250米;②同向而行,则50秒乙比甲多跑250米.【详解】解:①根据反向而行,得方程为30(x+y)=400;②根据同向而行,得方程为80(y-x)=400.那么列方程组,故选:A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,注意追及问题和相遇问题不同的求解方法是解题的关键.10、D【解析】【分析】①+②得出x+y的值,代入x+y=1中即可求出k的值.【详解】解:①+②得:3x+3y=4+k,∴,∵,∴,∴,解得:,故选:D【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.二、填空题1、2【解析】【分析】将代入二元一次方程可得一个关于的方程,解方程即可得.【详解】解:由题意,将代入方程得:,解得,2、 代入消元法 加减消元法 设未知数 解方程【解析】略3、【解析】【分析】相等关系有两个:两天行军的路程之和为98km,第一天行军的路程加上2km等于第二天的行军路程,再列方程组即可.【详解】解:设第一天行军的平均速度为x km/h,第二天行军的平均速度为y km/h,则故答案为:【点睛】本题考查的是二元一次方程组的应用,“确定相等关系列方程组”是解本题的关键.4、 代入 加减 二元 二元一次方程组 一元一次方程【解析】略5、1【解析】【分析】把代入求出m和n的值,然后代入计算即可.【详解】解:把代入,得,①+②,得2m=6,∴m=3,把m=3代入②,得3+2n=-1,∴n=-2,∴=3-2=1,故答案为:1.【点睛】本题考查了二元一次方程组的解,以及二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,灵活选择合适的方法是解答本题的关键.三、解答题1、 (1)甲生产15件,乙生产20件,恰好使两种原材料全部用完(2)【解析】【分析】(1)设甲生产x件,乙生产y件,根据题意得,,进行计算即可得;(2)用市场变化后的总销售额减去原计划的总销售额即可得.(1)解:设甲生产x件,乙生产y件,根据题意得,由②得,③将③代入①得: ,将代入③得:,解得则甲生产15件,乙生产20件,恰好使两种原材料全部用完.(2)解:根据题意得,.【点睛】本题考查了二元一次方程的应用,一元一次方程的应用,解题的关键是理解题意,找出等量关系.2、【解析】【分析】先将三元一次方程化为二元一次方程组,再化为一元一次方程即可解答本题.【详解】解:,①②,得④,②③,得⑤,④⑤,得,解得,把代入④,得,把,代入②,得.所以原方程组的解是.【点睛】本题考查解三元一次方程组,解题的关键是明确消元的数学思想,会解三元一次方程组.3、 (1)(2)【解析】【分析】用代入消元法或加减消元法解二元一次方程即可.(1)原方程可转化为,由①,得③,把③代入②,得,把代入①,得,故原方程组的解为.(2)原方程组可转化为,由①×4+②×5得:,解得,把代入②式得:,故原方程组的解为.【点睛】本题考查了解二元一次方程组,把二元一次方程组中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代人消元法,简称代入法.当二元一次方程组的两个方程中间一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.4、【解析】【分析】将代入消元求解的值,进而求出的值.【详解】解:由①得,③将③代入②得,解得把代入③,得∴方程组的解为.【点睛】本题考查了解二元一次方程组.解题的关键在于将二元一次方程组转化成一元一次方程.5、 (1)(2)【解析】【分析】(1)利用加减消元法解方程组即可;(2)利用代入消元法解方程组即可.(1)解: 把①代入②得:,即,解得,把代入到①中得:,∴方程组的解为:;(2)解: ,用①×2-②得:,解得,把代入到①中得:,解得∴方程组的解为:.【点睛】本题主要考查了解二元一次方程组,解题的关键在于能够熟知解二元一次方程组的方法.
相关试卷
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试课时训练,共16页。试卷主要包含了若是方程的解,则等于,若关于x等内容,欢迎下载使用。
这是一份初中冀教版第六章 二元一次方程组综合与测试同步测试题,共19页。试卷主要包含了已知,则等内容,欢迎下载使用。
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试同步训练题,共20页。试卷主要包含了已知方程组的解满足,则的值为等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)