冀教版七年级下册第六章 二元一次方程组综合与测试练习题
展开
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试练习题,共19页。试卷主要包含了已知x,y满足,则x-y的值为等内容,欢迎下载使用。
冀教版七年级下册第六章二元一次方程组达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、有下列方程:①xy=1;②2x=3y;③;④x2+y=3; ⑤;⑥ax2+2x+3y=0 (a=0),其中,二元一次方程有( )A.1个 B.2个 C.3个 D.4个2、二元一次方程的解可以是( )A. B. C. D.3、已知是方程x﹣ay=3的一个解,那么a的值为( )A.﹣1 B.1 C.﹣3 D.34、用代入法解方程组,以下各式正确的是( )A. B.C. D.5、已知关于x,y的方程组的唯一解是,则关于m,n的方程组的解是( )A. B. C. D.6、若为都是方程ax+by=1的解,则a+b的值是( )A.0 B.1 C.2 D.37、已知x,y满足,则x-y的值为( )A.3 B.-3 C.5 D.08、用代入消元法解二元一次方程组,将①代入②消去x,可得方程( )A.(y+2)+2y=0 B.(y+2)﹣2y=0 C.x=x+2 D.x﹣2(x﹣2)=09、如图,已知长方形中,,,点E为AD的中点,若点P在线段AB上以的速度由点A向点B运动.同时,点Q在线段BC上由点C向点B运动,若与全等,则点Q的运动速度是( )A.6或 B.2或6 C.2或 D.2或10、关于x,y的方程是二元一次方程,则m和n的值是( )A. B. C. D.第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、已知二元一次方程组,则x+y=______.2、关于x、y二元一次方程组的解满足,则k的值为______.3、某班组织20名同学去春游,同时租用A、B两种型号的车辆,A种车每辆有8个座位,B种车每辆有4个座位,要求租用的车辆不留空座,也不能超载,那么可以租用______辆A种车.4、某超市有甲,乙,丙三种坚果礼盒,它们都是由,,三种坚果组成,甲,乙,丙三种坚果礼盒的成本均为盒内,,三种坚果的成本之和。超市现有甲,乙的数量相等,丙的数量比甲的数量多25%,甲种坚果礼盒内装有种坚果5袋,种坚果1袋,种坚果3袋,乙种坚果礼盒内装有种坚果4袋,种坚果2袋,种坚果6袋,每盒甲种坚果礼盒的成本是1袋种坚果成本的15倍,销售利润率是60%,每盒乙种坚果礼盒的售价是成本的倍,每盒丙种坚果礼盒在成本的基础上提价60%后打八折销售,获利为1袋种坚果成本的5.6倍,如果超市将所有礼盒全部售出,则该超市出售这三种坚果礼盒获得的总利润率为______.5、某销售商十月份销售X、Y、C三种糖果的数量之比2∶1∶1,X、Y、C三种糖果的单价之比为1∶3∶4.十一月份该销售商为了迎接双“十一”加大了宣传力度.预计三种糖果的营业额都会增加.其中X种糖果增加的营业额占总增加的营业额的,此时,X种糖果的营业额与十一月份三种糖果总营业颁之比为3∶8,为使十一月份Y、C两种糖果的营业额之比为2∶3,则十一月份C种糖果增加的营业额与十一月份总营业额之比为____.三、解答题(5小题,每小题10分,共计50分)1、解方程组:.2、解方程组:.3、六年级学生若干人报名参加课外活动小组,男女生人数之比为4:3,后来又报了15名女生,这时女生人数恰好是男生人数的2倍,求最初报名时男生与女生各有多少人?4、风味美饭店生意火爆,座无虚席,老板决定扩大规模重新装修.若先请甲施工队单独做3天、再请乙施工队单独做24天,可完成施工,风味美饭店老板应付两队工钱共7200元.若先请甲施工队单独做9天、再请乙施工队单独做16天,可完成施工,风味美饭店老板应付两队工钱共7600元.(1)甲、乙两施工队工作一天,风味美饭店老板应各付多少钱?(2)若装修完后,风味美饭店马上投入使用,每天可盈利300元,现有三种方案:甲队单独做:②乙队单独做;③甲、乙两队同时做,你认为哪一种施工方案更有利于饭店老板?请你说明理由.5、解下列三元一次方程组: -参考答案-一、单选题1、C【解析】略2、A【解析】【分析】把各个选项答案带进去验证是否成立即可得出答案.【详解】解:A、代入中,方程左边 ,边等于右边,故此选项符合题意;B、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;C、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;D、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;故选A.【点睛】本题主要考查二元一次方程的解的定义,熟知定义是解题的关键:使二元一次方程两边相等的一组未知数的值,叫做二元一次方程的一组解.3、A【解析】【分析】将代入方程x-ay=3计算可求解a值.【详解】解:将代入方程x-ay=3得2-a=3,解得a=-1,故选:A.【点睛】本题主要考查二元一次方程的解,理解二元一次方程解的概念是解题的关键.4、B【解析】【分析】根据代入消元法的步骤把②变形代入到①中,然后整理即可得到答案.【详解】解:由②得,代入①得,移项可得,故选B.【点睛】本题考查了代入消元法,熟练掌握代入法是解题的关键.5、A【解析】【分析】先将关于的方程组变形为,再根据关于的方程组的解可得,由此即可得出答案.【详解】解:关于的方程组可变形为,由题意得:,解得,故选:A.【点睛】本题考查了求二元一次方程组的解,正确发现两个方程组之间的联系是解题关键.6、C【解析】【分析】把为代入ax+by=1,建立方程组,再解方程组即可.【详解】解: 为都是方程ax+by=1的解, 解②得: 把代入①得: 故选C【点睛】本题考查的是二元一次方程的解,二元一次方程组的解法,掌握“利用方程的解建立新的二元一次方程”是解本题的关键.7、A【解析】【分析】用第二个方程减去第一个方程即可解答.【详解】解:∵∴3x-4y-(2x-3y)=8-5x-y=3.故选A.【点睛】本题主要考查了解二元一次方程组以及求代数式的值,掌握整体法成为解答本题的关键.8、B【解析】【分析】把x﹣2y=0中的x换成(y+2)即可.【详解】解:用代入消元法解二元一次方程组,将①代入②消去x,可得方程(y+2)﹣2y=0,故选:B.【点睛】此题主要考查了解二元一次方程组,解方程组的基本思想是消元,基本方法是代入消元和加减消元.9、A【解析】【分析】设Q运动的速度为x cm/s,则根据△AEP与△BQP得出AP=BP、AE=BQ或AP=BQ,AE=BP,从而可列出方程组,解出即可得出答案.【详解】解:∵ABCD是长方形,∴∠A=∠B=90°,∵点E为AD的中点,AD=8cm,∴AE=4cm,设点Q的运动速度为x cm/s,①经过y秒后,△AEP≌△BQP,则AP=BP,AE=BQ,,解得,,即点Q的运动速度cm/s时能使两三角形全等.②经过y秒后,△AEP≌△BPQ,则AP=BQ,AE=BP,,解得:,即点Q的运动速度6cm/s时能使两三角形全等.综上所述,点Q的运动速度或6cm/s时能使两三角形全等.故选:A.【点睛】本题考查全等三角形的判定及性质,涉及了动点的问题使本题的难度加大了,解答此类题目时,要注意将动点的运用时间t和速度的乘积当作线段的长度来看待,这样就能利用几何知识解答代数问题了.10、C【解析】【分析】根据二元一次方程组的定义,得到关于的二元一次方程组,然后求解即可.【详解】解:由题意可得:,即①+②得:,解得将代入①得,故故选:C【点睛】此题考查了二元一次方程组的定义以及加减消元法求解二元一次方程组,解题的关键是理解二元一次方程组的定义以及掌握二元一次方程组的求解方法.二、填空题1、3【解析】【分析】用加减消元法解二元一次方程组即可.【详解】解:∵,①+②,得4x+4y=12,∴x+y=3,故答案为:3.【点睛】本题考查二元一次方程组的解,熟练掌握加减消元法解二元一次方程组是解题的关键.2、8【解析】【分析】转化方程组,求得解后,代入求值即可.【详解】∵,解得,∴,∴k=8,故答案为:8.【点睛】本题考查了二元一次方程组的解法,熟练构造新方程组是解题的关键.3、1或2##2或1【解析】【分析】设租用型车辆,型车辆,再列方程再求解方程的正整数解即可.【详解】解:设租用型车辆,型车辆,则 由题意得:为正整数,或 所以租用型车1辆或2辆,故答案为:1或2【点睛】本题考查的是二元一次方程的正整数解的应用,掌握“利用二次元一次方程的正整数解确定方案”是解本题的关键.4、45.31%.【解析】【分析】设每袋a种坚果成本为x,每袋b种坚果成本为y,每袋c种坚果成果为z,甲种礼盒有n盒,乙种礼盒有n盒,丙种礼盒有1.25n盒,根据已知条件求出甲、乙、丙礼盒的成本和售价以及利润,根据利润率=总利润÷成本,即可得出结果.【详解】解:设每袋a种坚果成本为x,每袋b种坚果成本为y,每袋c种坚果成果为z,甲种礼盒有n盒,乙种礼盒有n盒,丙种礼盒有1.25n盒,甲礼盒:5x+y+3z=15x,即y+3z=10x,售价为15x(1+60%)=25x,乙礼盒:成本=4x+2y+6z=4x+2×10x=24x,售价为×24x=36x,丙礼盒:设成本为m,则m(1+60%)×80%﹣m=5.6x,m=20x,售价为25.6x,甲礼盒利润25x﹣15x=10x,乙礼盒利润36x﹣24x=12x,丙礼盒利润5.6x,∴总利润率为≈45.31%,故答案为:45.31%.【点睛】本题主要考查列代数式,整式加减法,三元一次方程的实际应用,分析题意,找到关键的描述语,找到合适的等量关系,同时熟悉有关销售问题的概念和公式是解决问题的关键,属于中档题.5、【解析】【分析】根据三种糖果的数量比、单价比,可以按照比例设未知数,即10月份X、Y、C三种糖果的销售的数量和单价分别为2x、x、x;y、3y、4y,则10月份X、Y、C三种糖果的销售额比为2:3:4.因问题中涉及到X的10月销售数量,因此可以设11月份X增加的营业额为7x,则11月份总增加的营业额为15x;再根据X种糖果的营业额与十一月份三种糖果总营业额之比为3:8,建立等式,求出x.可以根据十一月份Y、C两种糖果的营业额之比为2:3算出十一月份C种糖果增加的营业额即可求解.【详解】解:设10月份X、Y、C三种糖果的销售的数量分别为2x、x、x;单价分别为y、3y、4y,∴10月份X、Y、C三种糖果的销售额分别为2xy,3xy,4xy;∵X种糖果增加的营业额占总增加的营业额的,∴设11月份X增加的营业额为7x,则11月份总增加的营业额为15x;又X种糖果的营业额与十一月份三种糖果总营业额之比为3:8,∴(7x+2xy):(15x+9xy)=3:8,解得x=xy,∴十一月份X种糖果的营业额为9xy,三种糖果总营业额为24xy,∴Y,C两种糖果的营业额之和为15xy,若十一月份Y、C两种糖果的营业额之比为2:3,则Y、C两种糖果的营业额分别为6xy,9xy;∴C种糖果增加的营业额为9xy-4xy=5xy,∴十一月份C种糖果增加的营业额与十一月份总营业额之比为5xy:24xy=5:24.【点睛】本题考查了三元一次方程组的应用,掌握用代数式表示每个参数,并用整体法解题是关键.三、解答题1、【解析】【分析】利用加减消元法求解即可.【详解】解:整理可得, ②×2,可得:4x﹣2y=72③,③+①,可得:7x=84,解得:x=12,把x=12代入②,可得:24﹣y=36,解得:y=﹣12,∴方程组的解为.【点睛】本题考查了解二元一次方程组,解二元一次方程组的基本思路是消元,将二元方程转化为一元方程是解题的关键.2、【解析】【分析】由①②相加消去y,与③组成关于x、 z的二元-次方程组, 进一步解二元一次方程组, 求得答案即可.【详解】解:①+②得,3x+z=6④③④组成二元一次方程组得,解得,代入①得,y=2,∴原方程组的解为.【点睛】本题考查三元一次方程组的解法,有加减法和代入法两种,一般选用加减法解方程组较简单.3、最初报名时男生有12人,女生有9人.【解析】【分析】设最初报名时女生有x人,男生有y人,由题意:男女生人数之比为4:3,后来又报了15名女生,这时女生人数恰好是男生人数的2倍,列出方程组,解之即可.【详解】解:设最初报名时女生有x人,男生有y人,依题意,得:,解得:,答:最初报名时男生有12人,女生有9人.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.4、 (1)甲施工队工作一天饭店应付400元,乙施工队工作一天饭店应付250元.(2)安排甲、乙两个装修施工队同时施工更有利于饭店【解析】【分析】(1)设甲施工队工作一天饭店应付x元,乙施工队工作一天饭店应付y元,根据“若先请甲施工队单独做3天、再请乙施工队单独做24天,可完成施工,风味美饭店老板应付两队工钱共7200元.若先请甲施工队单独做9天、再请乙施工队单独做16天,可完成施工,风味美饭店老板应付两队工钱共7600元”,即可得出关于x,y的二元一次方程施工队,解之即可得出结论;(2)设甲施工队单独完成工程需要a天,乙施工队单独完成工程需要b天,根据题意列方程组求出两施工队单独完成工程的天数,根据总费用=每天需支付的费用×工作时间,可分别求出单独请甲施工队和单独请乙施工队施工所需费用,分单独请甲施工队施工、单独请乙施工队施工和请甲、乙两施工队合做施工三种情况考虑,分别求出三种情况下损失的钱数,比较后即可得出结论.(1)设甲施工队工作一天饭店应付x元,乙施工队工作一天饭店应付y元,依题意,得:,解得:.答:甲施工队工作一天饭店应付400元,乙施工队工作一天饭店应付250元.(2)设甲施工队单独完成工程需要a天,乙施工队单独完成工程需要b天,根据题意得, 解得, 经检验,∴是方程组的解,单独请甲施工队需要的费用为400×21=8400(元);单独请乙施工队需要的费用为250×28=7000(元).同做:(天)合做需要的费用为(元)甲乙合做比乙单独做早完工(28-12)=16(天)16天饭店收益:16×300=4800(元)7800-4800=3000(元),即相对于乙单独做甲乙合做只花3000元;甲单独做比乙单独做早完工:28-21=7(天)300×7=2100(元),8400-2100=6300(元),即相对于乙单独做甲乙合做只花6300元;∵3000<6300<7000,∴甲、乙合做花费最少.答:安排甲、乙两个装修施工队同时施工更有利于饭店【点睛】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程施工队;(2)利用总费用=每天需支付的费用×工作时间,分别求出单独请甲施工队和单独请乙施工队施工所需费用;(3)利用损失的总钱数=施工费用+因装修损失收入,分别求出三种施工方式损失的总钱数.5、【解析】【详解】将①代入②、③,消去z,得解得把x=2,y=3代入①,得z=5。所以原方程组的解为
相关试卷
这是一份数学七年级下册第六章 二元一次方程组综合与测试当堂达标检测题,共18页。试卷主要包含了有下列方程,已知x,y满足,则x-y的值为,《九章算术》中记载,若关于x等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试同步测试题,共20页。试卷主要包含了某学校体育有场的环形跑道长,甲等内容,欢迎下载使用。
这是一份初中冀教版第六章 二元一次方程组综合与测试同步测试题,共20页。试卷主要包含了在一次爱心捐助活动中,八年级,若是方程组的解,则的值为等内容,欢迎下载使用。