冀教版七年级下册第六章 二元一次方程组综合与测试当堂检测题
展开
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试当堂检测题,共18页。试卷主要包含了已知是方程的解,则k的值为,在一次爱心捐助活动中,八年级等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、若关于x、y的二元一次方程的解,也是方程的解,则m的值为( )
A.-3B.-2C.2D.无法计算
2、若关于x,y的二元一次方程组的解互为相反数,则k的值是( )
A.4B.3C.2D.1
3、下列方程中,①x+y=6;②x(x+y)=2;③3x-y=z+1;④m+=7是二元一次方程的有( )
A.1个B.2个C.3个D.4个
4、方程,,,,中是二元一次方程的有( )个
A.1B.2C.3D.4
5、已知是方程的解,则k的值为( )
A.﹣2B.2C.4D.﹣4
6、《九章算术》是中国古代的一本重要数学著作,其中有一道方程的应用题:“五只雀、六只燕,共重16两,雀重燕轻.互换其中一只,恰好一样重.问每只雀、燕的重量各为多少?”解:设雀每只x两,燕每只y两,则可列出方程组为( )
A.B.
C.D.
7、用代入法解方程组,以下各式正确的是( )
A.B.
C.D.
8、在一次爱心捐助活动中,八年级(1)班40名同学共捐款275元,已知同学们捐款的面额只有5元、10元两种,求捐5元和10元的同学各有多少名?若设捐5元的同学有x名,捐10元的有y名,则可列方程组为( )
A.B.
C.D.
9、下列各方程中,是二元一次方程的是( )
A.=y+5xB.3x+1=2xyC.x=y2+1D.x+y=1
10、学校计划用200元钱购买、两种奖品(两种都要买),种每个15元,种每个25元,在钱全部用完的情况下,有多少种购买方案( )
A.2种B.3种C.4种D.5种
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、已知二元一次方程组,则x+y=______.
2、三元一次方程组:含有___未知数,每个方程中含有未知数的项的___都是____,并且一共有____方程,这样的方程组叫做三元一次方程组.
3、已知是方程2x+ay=7的一个解,那么a=_____.
4、二元一次方程组中有两个未知数,如果消去其中的一个未知数,那么就把二元一次方程组转化成____________方程了,于是可以求出其中的一个未知数,然后再求另一个未知数.这种将未知数的个数由多转化少、逐一解决的想法,叫做____________思想.
5、已知二元一次方程组为,则2x﹣2y的值为 _____.
三、解答题(5小题,每小题10分,共计50分)
1、养牛场原有30头大牛和15头小牛,1天约需用饲料675 kg;一周后又购进12头大牛和5头小牛,这时1天约需用饲料940 kg.饲养员李大叔估计每头大牛1天约需饲料18~20 kg,每头小牛1天约需饲料7 ~8 kg.你能否通过计算检验他的估计?
解:设平均每头大牛和每头小牛1天各需用饲料为xkg和ykg;
根据题意列方程:,
解得:___________
所以,每只大牛1天约需饲料20kg,每只小牛1天约需饲料5kg,饲养员李大叔对大牛的食量估计正确,对小牛的食量估计偏高.
2、对于任意一个三位正整数,如果满足百位上的数字小于个位上的数字,且百位上的数字与个位上的数字之和等于十位上的数字,那么称这个数为“时空伴随数”,用“时空伴随数”的十位数字的平方减去个位数字的平方再减去百位数字的平方,得到的结果记为.例如:,满足,且,所以143是“时空伴随数”,则;例如:,满足,但是,所以395不是“时空伴随数”;再如:,满足,但是,所以352不是“时空伴随数”.
(1)判断264和175是不是“时空伴随数”?并说明理由;
(2)若是“时空伴随数”,且的3倍与的十位数字之和能被7整除,求满足条件的“时空伴随数”以及的最大值.
3、解方程组:.
4、选用适当的方法解方程组:
(1)本题你选用的方法是______;
(2)写出你的解题过程.
5、解方程(组):
(1)
(2)
-参考答案-
一、单选题
1、C
【解析】
【分析】
将m看作已知数值,利用加减消元法求出方程组的解,然后代入求解即可得.
【详解】
解:,
得:,
解得:,
将代入①可得:3m+2y=5m,
解得:,
∴方程组的解为:,
∵方程组的解也是方程的解,
代入可得,
解得,
故选:C.
【点睛】
题目主要考查解二元一次方程组求参数,熟练掌握解二元一次方程组的方法是解题关键.
2、C
【解析】
【分析】
先根据“方程组的解互为相反数”可得,再与方程联立,利用消元法求出的值,然后代入方程即可得.
【详解】
解:由题意得:,
联立,
由①②得:,
解得,
将代入①得:,
解得,
将代入方程得:,
解得,
故选:C.
【点睛】
本题考查了解二元一次方程组等知识点,熟练掌握消元法是解题关键.
3、A
【解析】
【分析】
含有两个未知数,且含未知数的项的最高次数是1,这样的整式方程是二元一次方程,根据定义逐一分析即可.
【详解】
解:①x+y=6是二元一次方程;
②x(x+y)=2,即不是二元一次方程;
③3x-y=z+1是三元一次方程;
④m+=7不是二元一次方程;
故符合题意的有:①,
故选A
【点睛】
本题考查的是二元一次方程的定义,掌握定义,根据定义判断方程是否是二元一次方程是解本题的关键.
4、A
【解析】
【详解】
解:方程是二元一次方程,
中的的未知数的次数,不是二元一次方程,
含有三个未知数,不是二元一次方程,
是代数式,不是二元一次方程,
中的的未知数的次数是2,不是二元一次方程,
综上, 二元一次方程的个数是1个,
故选:A.
【点睛】
本题考查了二元一次方程,熟记二元一次方程的定义(含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程)是解题关键.
5、C
【解析】
【分析】
把代入是方程kx+2y=﹣2得到关于k的方程求解即可.
【详解】
解:把代入方程得:﹣2k+6=﹣2,
解得:k=4,
故选C.
【点睛】
本题主要考查二元一次方程的解,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.有解必代是解决此类题目的基本思路.
6、B
【解析】
【分析】
根据题意列二元一次方程组即可.
【详解】
解:设雀每只x两,燕每只y两
则五只雀为5x,六只燕为6y
共重16两,则有
互换其中一只则
五只雀变为四只雀一只燕,即4x+y
六只燕变为五只燕一只雀,即5y+x
且一样重即
由此可得方程组.
故选:B.
【点睛】
列二元一次方程组解应用题的一般步骤审:审题,明确各数量之间的关系;设:设未知数(一般求什么,就设什么);找:找出应用题中的相等关系;列:根据相等关系列出两个方程,组成方程组;解:解方程组,求出未知数的值;答:检验方程组的解是否符合题意,写出答案.
7、B
【解析】
【分析】
根据代入消元法的步骤把②变形代入到①中,然后整理即可得到答案.
【详解】
解:由②得,代入①得,
移项可得,
故选B.
【点睛】
本题考查了代入消元法,熟练掌握代入法是解题的关键.
8、C
【解析】
【分析】
根据题意,x+y=40,5x+10y=275,判断即可.
【详解】
根据题意,得x+y=40,5x+10y=275,
∴符合题意的方程组为,
故选C.
【点睛】
本题考查了二元一次方程组的应用,准确找到符合题意的等量关系是解题的关键.
9、D
【解析】
【分析】
根据二元一次方程的定义逐一排除即可.
【详解】
解:A、=y+5x不是二元一次方程,因为不是整式方程;
B、3x+1=2xy不是二元一次方程,因为未知数的最高项的次数为2;
C、x=y2+1不是二元一次方程,因为未知数的最高项的次数为2;
D、x+y=1是二元一次方程.
故选:D.
【点睛】
此题主要考查了二元一次方程定义关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.
10、A
【解析】
【分析】
设购买了A种奖品x个,B种奖品y个,根据学校计划用200元钱购买A、B两种奖品,其中A种每个15元,B种每个25元,钱全部用完可列出方程,再根据x,y为非负整数求出解即可得.
【详解】
解:设购买了A种奖品x个,B种奖品y个,
根据题意得:,
化简整理得:,得,
∵x,y为非负整数,
∴,,,
∴购买方案为:
方案1:购买了A种奖品0个,B种奖品8个;
方案2:购买了A种奖品5个,B种奖品5个;
方案3:购买了A种奖品10个,B种奖品2个;
∵两种奖品都要买,
∴方案1不符合题意,舍去,
综上可得:有两种购买方案.
故选:A.
【点睛】
本题考查了二元一次方程的应用,根据题意列出二元一次方程,然后根据解为非负整数确定未知数的值是解题关键.
二、填空题
1、3
【解析】
【分析】
用加减消元法解二元一次方程组即可.
【详解】
解:∵,
①+②,得4x+4y=12,
∴x+y=3,
故答案为:3.
【点睛】
本题考查二元一次方程组的解,熟练掌握加减消元法解二元一次方程组是解题的关键.
2、 三个 次数 1 3个
【解析】
【分析】
由题意直接根据三元一次方程组的定义进行填空即可.
【详解】
解:含有三个未知数,每个方程中含未知数的项的次数均为1,并且一共有3个方程,这样的方程组叫做三元一次方程组.
故答案为:三个,次数,1,3个.
【点睛】
本题考查三元一次方程组的定义,注意掌握含有三个未知数,每个方程中含未知数的项的次数均为一次,并且一共有3个方程,这样的方程组叫做三元一次方程组.
3、-1
【解析】
【分析】
根据方程的解的概念将方程的解代入原方程,然后计算求解.
【详解】
解:由题意可得:2×3﹣a=7,
解得:a=﹣1,
故答案为:﹣1.
【点睛】
本题考查二元一次方程的解和解一元一次方程,理解方程的解的概念是解题关键.
4、 一元一次 消元
【解析】
略
5、-2
【解析】
【分析】
利用整体思想,两式相减得到x-y=-1,整体代入到代数式中求值即可.
【详解】
解:
①-②得:x﹣y=﹣1,
∴2x﹣2y
=2(x﹣y)
=2×(﹣1)
=﹣2,
故答案为:﹣2.
【点睛】
本题考查了二元一次方程组的应用,利用整体思想,两式相减得到x-y=-1是解题的关键.
三、解答题
1、
【解析】
略
2、 (1)264是“时空伴随数”,175不是“时空伴随数”,理由见解析
(2)36
【解析】
【分析】
(1)根据定义直接判断即可;
(2)根据定义设,进而根据整除的关系,列出二元一次方程,求其整数解即可求得,进而根据进行计算,并比较结果求得最大值.
(1)
264是“时空伴随数”,175不是“时空伴随数”,理由如下:
∵且,∴264是“时空伴随数”.
∵但是,∴175不是“时空伴随数”
(2)
∵是“时空伴随数”,
∴设,
(,,均为整数)
∴能被7整除
∴是7的倍数,
∵,,
∴,
∴
或或
,,
,
∵,
∴的最大值为36
【点睛】
本题考查了新定义,二元一次方程求整数解,理解题意是解题的关键.
3、
【解析】
【分析】
由①②相加消去y,与③组成关于x、 z的二元-次方程组, 进一步解二元一次方程组, 求得答案即可.
【详解】
解:
①+②得,3x+z=6④
③④组成二元一次方程组得,
解得,
代入①得,y=2,
∴原方程组的解为.
【点睛】
本题考查三元一次方程组的解法,有加减法和代入法两种,一般选用加减法解方程组较简单.
4、(1)代入消元法;(2).
【解析】
【分析】
(1)由题意依据条件可以选择代入消元法进行求解;
(2)根据题意直接利用代入消元法进行求解即可得出答案.
【详解】
解:(1)本题选用代入消元法;
故答案为:代入消元法;
(2)
由①变形得,③,
将③代入②得,,
解得:,
将代入③得,,
经检验是方程组的解.
【点睛】
本题考查解二元一次方程组,熟练掌握并适当选用代入消元法和加减消元法进行求解是解题的关键.
5、 (1)y=-1
(2)
【解析】
【分析】
(1)方程去分母,去括号,移项,合并同类项,把y系数化为1,即可求出解;
(2)方程组利用代入消元法求出解即可.
(1)
解:去分母得:3(3y-1)-2(5y-7)=12,
去括号得:9y-3-10y+14=12,
移项得:9y-10y=12+3-14,
合并得:-y=1,
解得:y=-1;
(2)
解:
①+②得:4x=16,
解得:x=4,
把x=4代入①得:4+2y=10,
解得:y=3,
则方程组的解为
【点睛】
此题考查了解二元一次方程组,以及解一元一次方程,熟练掌握方程组及方程的解法是解本题的关键.
相关试卷
这是一份数学七年级下册第六章 二元一次方程组综合与测试达标测试,共18页。试卷主要包含了有下列方程等内容,欢迎下载使用。
这是一份数学七年级下册第六章 二元一次方程组综合与测试当堂达标检测题,共16页。
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试练习题,共19页。试卷主要包含了已知x,y满足,则x-y的值为等内容,欢迎下载使用。