冀教版七年级下册第六章 二元一次方程组综合与测试精练
展开
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试精练,共18页。试卷主要包含了若是方程的解,则等于等内容,欢迎下载使用。
冀教版七年级下册第六章二元一次方程组课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、下列各组数值是二元一次方程的解是( )A. B. C. D.2、下列方程中,属于二元一次方程的是( )A.xy﹣3=1 B.4x﹣2y=3 C.x+=4 D.x2﹣4y=13、若关于x,y的方程是二元一次方程,则m的值为( )A.﹣1 B.0 C.1 D.24、根据大马和小马的对话求大马和小马各驮了几包货物.大马说:“把我驮的东西给你1包多好哇!这样咱俩驮的包数就一样多了.”小马说:“我还想给你1包呢!”大马说:“那可不行!如果你给我1包,我驮的包数就是你的2倍了.”小明将这个实际问题转化为二元一次方程组问题.设未知数x,y,已经列出一个方程x﹣1=y+1,则另一个方程应是( )A.x+1=2y B.x+1=2(y﹣1)C.x﹣1=2(y﹣1) D.y=1﹣2x5、某校九年级学生到礼堂开会,若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳.若设学生人数为,长凳数为,由题意列方程组为( )A. B.C. D.6、若是方程的解,则等于( )A. B. C. D.7、如果二元一次方程组的解是二元一次方程的一个解,那么的值是( )A.9 B.7 C.5 D.38、《九章算术》是中国古代的一本重要数学著作,其中有一道方程的应用题:“五只雀、六只燕,共重16两,雀重燕轻.互换其中一只,恰好一样重.问每只雀、燕的重量各为多少?”解:设雀每只x两,燕每只y两,则可列出方程组为( )A. B.C. D.9、若关于x,y的二元一次方程组的解,也是二元一次方程x+2y=﹣1的解,则a的值为( )A.2 B.1 C. D.010、二元一次方程组更适合用哪种方法消元( )A.代入消元法 B.加减消元法C.代入、加减消元法都可以 D.以上都不对第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、关于x、y的二元一次方程组的解满足,则m的值是_______.2、将变形成用含的式子表示,那么_______.3、定义新运算:规定※,若3※,2※,则※※__.4、2022年北京冬奥会已经越来越近了,这是我国重要历史节点的重大标志性活动,更是全国人民的一次冰雪运动盛宴,与此同时北京冬奥会吉祥物冰墩墩也受到人们的喜爱,关于冰墩墩的各种周边纪念品:徽章、风铃、抱枕、公仔正在某商场火热销售中.已知徽章和抱枕的价格相同,公仔的单价是风铃的两倍,且徽章和风铃的单价之和不超过120元.元旦节期间,徽章的销售数量是公仔数量的2倍,风铃和抱枕的销售数量相同,其中徽章和风铃共卖出120件,抱枕和公仔的销售总额比风铃和徵章的销售总额多2200元,则徽章和风铃销售总额的最大值是______元.5、一般地,二元一次方程组的两个方程的____,叫做二元一次方程组的解.三、解答题(5小题,每小题10分,共计50分)1、甲仓库存粮比乙仓库存粮少5吨,现从甲仓库运出存粮30吨,从乙仓库运出存粮的40%,这时乙仓库所余粮食是甲仓库所余粮食的2倍,问甲、乙两仓库原各存粮多少吨?2、小明从家到学校的路程为3.3千米,其中有一段上坡路,平路,和下坡路.如果保持上坡路每小时行3千米.平路每小时行4千米,下坡路每小时行5千米.那么小明从家到学校用一个小时,从学校到家要44分钟,求小明家到学校上坡路、平路、下坡路各是多少千米?3、解方程组4、对于任意一个三位正整数,如果满足百位上的数字小于个位上的数字,且百位上的数字与个位上的数字之和等于十位上的数字,那么称这个数为“时空伴随数”,用“时空伴随数”的十位数字的平方减去个位数字的平方再减去百位数字的平方,得到的结果记为.例如:,满足,且,所以143是“时空伴随数”,则;例如:,满足,但是,所以395不是“时空伴随数”;再如:,满足,但是,所以352不是“时空伴随数”.(1)判断264和175是不是“时空伴随数”?并说明理由;(2)若是“时空伴随数”,且的3倍与的十位数字之和能被7整除,求满足条件的“时空伴随数”以及的最大值.5、解方程组:. -参考答案-一、单选题1、D【解析】【分析】将选项中的解分别代入方程,使方程成立的即为所求.【详解】解:A.代入方程,,不满足题意;B.代入方程,,不满足题意;C.代入方程,,不满足题意;D.代入方程,,满足题意;故选:D.【点睛】本题考查了二元一次方程的解,熟练掌握二元一次方程的解与二元一次方程的关系是解题的关键.2、B【解析】【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【详解】解:A、xy-3=1,是二元二次方程,故本选项不合题意;B、4x-2y=3,属于二元一次方程,故本选项符合题意;C、x+=4,是分式方程,故本选项不合题意;D、x2-4y=1,是二元二次方程,故本选项不合题意;故选:B.【点睛】此题主要考查了二元一次方程的定义,关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.3、C【解析】【分析】根据二元一次方程的定义得出且,再求出答案即可.【详解】解:∵关于x,y的方程是二元一次方程,∴且,解得:m=1,故选C.【点睛】本题考查了二元一次方程的定义,能熟记二元一次方程的定义是解此题的关键.4、B【解析】【分析】设大马驮x袋,小马驮y袋.本题中的等量关系是:2×(小马驮的﹣1袋)=大马驮的+1袋;大马驮的﹣1袋=小马驮的+1袋,据此可列方程组求解.【详解】解:设大马驮x袋,小马驮y袋.根据题意,得.故选:B.【点睛】此题考查了二元一次方程组应用题,解题的关键是正确分析题目中的等量关系.5、B【解析】【分析】设学生人数为x,长凳数为y,然后根据若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳,列出方程即可.【详解】解:设学生人数为x,长凳数为y,由题意得:,故选B.【点睛】本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够准确理解题意.6、B【解析】【分析】把代入到方程中得到关于k的方程,解方程即可得到答案.【详解】解:∵是方程的解,∴,∴,故选B.【点睛】本题主要考查了二元一次方程解的定义和解一元一次方程方程,熟知二元一次方程的解得定义是解题的关键.7、B【解析】【分析】先求出的解,然后代入可求出a的值.【详解】解:,由①+②,可得2x=4a,∴x=2a,将x=2a代入①,得2a-y=a,∴y=2a﹣a=a,∵二元一次方程组的解是二元一次方程的一个解,∴将代入方程3x﹣5y﹣7=0,可得6a﹣5a﹣7=0,∴a=7,故选B.【点睛】本题考查了二元一次方程的解,以及二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,灵活选择合适的方法是解答本题的关键.8、B【解析】【分析】根据题意列二元一次方程组即可.【详解】解:设雀每只x两,燕每只y两则五只雀为5x,六只燕为6y共重16两,则有互换其中一只则五只雀变为四只雀一只燕,即4x+y六只燕变为五只燕一只雀,即5y+x且一样重即由此可得方程组.故选:B.【点睛】列二元一次方程组解应用题的一般步骤审:审题,明确各数量之间的关系;设:设未知数(一般求什么,就设什么);找:找出应用题中的相等关系;列:根据相等关系列出两个方程,组成方程组;解:解方程组,求出未知数的值;答:检验方程组的解是否符合题意,写出答案.9、D【解析】【分析】解方程组,用a表示x,y,把x,y代入x+2y=﹣1中得到关于a的方程,解方程即可.【详解】解:,①+②得2x=2a+6,x=a+3,把代入①,得a+3+y=-a+1,y=-2a-2,∵x+2y=﹣1∴a+3+2(-2a-2)=-1,∴a=0,故选D.【点睛】本题考查了解二元一次方程组以及二元一次方程的解,解方程组,用a表示x,y,把x,y代入x+2y=﹣1中得到关于a的方程是解题的关键.10、B【解析】【分析】由题意直接根据加减消元法和代入消元法的特点进行判断即可.【详解】解:,①②,得,消去了未知数,即二元一次方程组更适合用加减法消元,故选:.【点睛】本题考查解二元一次方程组,注意掌握解二元一次方程组的方法有:代入消元法和加减消元法两种.二、填空题1、2【解析】【分析】先两式相加得,再整体代入方程5x+y=得到关于m的方程,解方程即可求出m的值.【详解】解:,①+②得,把代入5x+y=得,解得m=2,故答案为:2.【点睛】本题考查了用加减消元法解二元一次方程组,同时也考查了求一元一次方程的解.整体代入是解题的关键.2、【解析】【分析】先移项,再将系数化为1,即可求解.【详解】解:,移项,得:, .故答案为:【点睛】本题主要考查了等式的基本性质,熟练掌握等式两边同时加上(或减去)同一个数(或整式),等式仍然成立;等式两边同时乘或除以同一个不为0的数(或整式),等式仍然成立是解题的关键.3、16【解析】【分析】先根据3※,2※列方程组求出m和n的值,然后再计算※※2即可.【详解】解:※,2※,,解得:,∴※,※,※※※,故答案为:16.【点睛】本题考查了新定义,解二元一次方程组,以及有理数的混合运算,根据题意求出m和n的值是解答本题的关键.4、6100【解析】【分析】设徽章和抱枕的价格为a元,风铃的价格为b元,公仔的价格为2b元,公仔的销售数量为m件,徽章的销售数量为2m件,则风铃和抱枕的销售数量为(120-2m)件,根据题意列出方程求解即可.【详解】解:设徽章和抱枕的价格为a元,风铃的价格为b元,公仔的价格为2b元,公仔的销售数量为m件,徽章的销售数量为2m件,则风铃和抱枕的销售数量为(120-2m)件,根据题意列方程得,,化简得,;徽章和风铃销售总额为,把代入得,;∵,当时,徽章和风铃销售总额的最大,最大值是(元);故答案为:6100.【点睛】本题考查了方程和不等式的应用,解题关键是根据题意中的数量关系,设未知数,列出方程,根据等式的性质进行变形,整体代入求解.5、公共解【解析】略三、解答题1、甲仓库原来存粮45吨,乙仓库原来存粮50吨【解析】【分析】设甲仓库原来存粮吨,乙仓库原来存粮吨,由题意:甲仓库存粮比乙仓库存粮少5吨,从甲仓库运出存粮30吨,从乙仓库运出存粮的,这时乙仓库所余粮食是甲仓库所余粮食的2倍,列出方程组,解方程组即可.【详解】解:设甲仓库原来存粮吨,乙仓库原来存粮吨,由题意得:,解得:,答:甲仓库原来存粮45吨,乙仓库原来存粮50吨.【点睛】本题考查了二元一次方程组的应用,找准等量关系,解题的关键是正确列出二元一次方程组.2、上坡路2.25千米、平路0.8千米、下坡路0.25千米【解析】【分析】本题中需要注意的一点是:去时的上坡和下坡路与回来时的上坡和下坡路正好相反,平路路程不变.题中的等量关系是:从家到学校的路程为3.3千米;去时上坡时间+下坡时间+平路时间=1小时;回时上坡时间+下坡时间+平路时间=44分,据此可列方程组求解.【详解】解:设去时上坡路是x千米,平路是y千米,下坡路是z千米.依题意得:,解得.答:上坡路2.25千米、平路0.8千米、下坡路0.25千米.【点睛】本题考查了三元一次方程组的应用,本题有三个未知量,还需注意去时是上坡路回时是下坡路,回来时恰好相反,平路不变.3、【解析】【分析】解法一:将方程②变形,利用代入法求解;解法二:将方程②乘以2,利用加减法求解.【详解】解:,解法一:由②,得x=-2y.③ 将③代入①,得-6y+4y=6. 解这个一元一次方程,得y=-3. 将y=-3代入③,得x=6. 所以原方程组的解是. 解法二:②×2,得2x+4y=0.③ ①-③,得x=6. 将x=6代入②,得y=-3. 以原方程组的解是 .【点睛】此题考查了解二元一次方程组,正确掌握解二元一次方程组的方法:代入法和加减法,并根据每个方程的特点选择适合的解法是解题的关键.4、 (1)264是“时空伴随数”,175不是“时空伴随数”,理由见解析(2)36【解析】【分析】(1)根据定义直接判断即可;(2)根据定义设,进而根据整除的关系,列出二元一次方程,求其整数解即可求得,进而根据进行计算,并比较结果求得最大值.(1)264是“时空伴随数”,175不是“时空伴随数”,理由如下:∵且,∴264是“时空伴随数”.∵但是,∴175不是“时空伴随数”(2)∵是“时空伴随数”,∴设,(,,均为整数)∴能被7整除∴是7的倍数,∵,,∴,∴或或,,,∵,∴的最大值为36【点睛】本题考查了新定义,二元一次方程求整数解,理解题意是解题的关键.5、【解析】【分析】根据题意整理后②①即可求出,把代入①得出,再求出即可.【详解】解:整理,得,②①,得,把代入①,得,解得:,所以方程组的解是.【点睛】本题考查解二元一次方程组,能把二元一次方程组转化成一元一次方程是解答此题的关键.
相关试卷
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试达标测试,共20页。
这是一份2020-2021学年第六章 二元一次方程组综合与测试课后作业题,共19页。试卷主要包含了用代入消元法解关于,若方程组的解为,则方程组的解为,有下列方程,下列方程组中,二元一次方程组有等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试课后作业题,共17页。试卷主要包含了有下列方程组等内容,欢迎下载使用。