冀教版七年级下册第六章 二元一次方程组综合与测试巩固练习
展开
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试巩固练习,共18页。试卷主要包含了下列方程是二元一次方程的是,《九章算术》中记载,二元一次方程组的解是等内容,欢迎下载使用。
冀教版七年级下册第六章二元一次方程组综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、已知,则( )A. B. C. D.2、一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大9,则这样的两位数共有( )A.5个 B.6个 C.7个 D.8个3、在沙县国际连锁早餐店里,李大爷买5个馒头、3个包子,老板少拿2元,只要17元;张大妈买11个馒头、5个包子,老板以售价的九折优惠,只要33.3元.若馒头每个元,包子每个元,依题意可列方程组为( )A. B.C. D.4、下列方程是二元一次方程的是( )A.x﹣xy=1 B.x2﹣y﹣2x=1 C.3x﹣y=1 D.﹣2y=15、《孙子算经》是中国古代最重要的数学著作,其中记载:“今有木,不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺.木长几何?”译文:“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问木长多少尺?”设绳子长x尺,木长y尺,可列方程组为( ).A. B.C. D.6、下列各方程中,是二元一次方程的是( )A.=y+5x B.3x+1=2xy C.x=y2+1 D.x+y=17、《九章算术》中记载:“今有共买牛,人出六,不足四十;人出八,余四;问人数、牛价各几何?”其大意是:今有人合伙买牛,若每人出6钱,还差40钱;若每人出8钱,多余4钱,问合伙人数、牛价各是多少?设合伙人数为人,牛价为 钱,根据题意,可列方程组为( )A. B. C. D. 8、观察下列方程其中是二元一次方程是( )A.5x﹣y=35 B.xy=16C.2x2﹣1=0 D.3z﹣2(z+1)=69、二元一次方程组的解是( )A. B. C. D.10、m为正整数,已知二元一次方程组有整数解则m2=( )A.4 B.1或4或16或25C.64 D.4或16或64第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、一支部队第一天行军4小时,第二天行军5小时,两天共行军98km,且第一天比第二天少走2km,设第一天行军的平均速度为x km/h,第二天行军的平均速度为y km/h,可列方程组______.2、某班组织20名同学去春游,同时租用A、B两种型号的车辆,A种车每辆有8个座位,B种车每辆有4个座位,要求租用的车辆不留空座,也不能超载,那么可以租用______辆A种车.3、一个两位数,个位数字和十位数字的和是13,如果将个位数字和十位数字对调后得到的新数比原数大27,则原来的两位数是_________.4、若是方程kx﹣3y=1的一个解,则k=_____.5、三元一次方程:含有___未知数,并且含有未知数的项的___都是____,这样的方程叫做三元一次方程.三、解答题(5小题,每小题10分,共计50分)1、解方程组:.2、例3.林芳、向民、艳君三位同学去商店买文具用品,林芳说:“我买了4支水笔,2本笔记本,10本作文本共用了19元.”向民说:“我买了2支水笔,3本笔记本,10本练习本共用了20元,”艳君说:“我买了12本练习本,8本作文本共用了10元;作文本与练习本的价格是一样哦!”请根据以上内容,求出笔记本,水笔,练习本的价格.3、对于任意一个四位正整数m,若满足百位数字比千位数字大1,个位数字比十位数字大1,且各个数位上的数字不为零,我们就把这个数叫作“虎虎生威数”,将“虎虎生威数”m的千位、个位上的数字交换位置,百位、十位上的数字也交换位置,得到一个新的数,记.(1)最小的虎虎生威数是______;______;(2)已知p,q都是虎虎生威数,其中,(,:且均为整数),若,且满足是11的倍数,求p、q的值.4、目前,新型冠状病毒在我国虽可控可防,但不可松懈,某校欲购置规格分别为300ml和500ml的甲、乙两种免洗手消毒液共400瓶,其中甲消毒液15元/瓶,乙消毒液20元/瓶.(1)如果购买这两种消毒液共7500元,求甲、乙两种消毒液各购买多少瓶?(2)在(1)的条件下,若该校在校师生共1800人,平均每人每天都需使用10ml的免洗手消毒液,则这批消毒液可使用多少天?5、解方程组 -参考答案-一、单选题1、B【解析】【分析】根据二元一次方程组的解法以及非负数的性质即可求出答案.【详解】解:由题意可知: 解得: ,故选:B.【点睛】本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.2、D【解析】【分析】设原来的两位数为10a+b,则新两位数为,根据新两位数比原两位数大9,列出方程,找出符合题意的解即可.【详解】解:设原来的两位数为10a+b,根据题意得:10a+b+9=10b+a,解得:b=a+1,因为可取1到8个数,所以这两位数共有8个,它们分别,12,23,34,45,56,67,78,89,都是个位数字比十位数字大1的两位数.故选:D.【点睛】本题考查了二元一次方程的应用,解题的关键是弄清题意,找合适的等量关系,列出方程,再求解,弄清两位数的表示是:十位上的数+个位上的数,注意不要漏数.3、B【解析】【分析】设馒头每个元,包子每个元,根据李大爷买5个馒头、3个包子的钱数等于元,张大妈买11个馒头、5个包子的钱数等于元列出二元一次方程组即可【详解】解:设馒头每个元,包子每个元,根据题意得故选B【点睛】本题考查了列二元一次方程组,求得张大妈买的包子和馒头没打折时的钱数等于元是解题的关键.4、C【解析】【分析】根据二元一次方程的定义逐个判断即可.含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.【详解】解:A、x﹣xy=1含有两个未知数,但未知数的最高次数是2次,∴x﹣xy=1不是二元一次方程;B、x2﹣y﹣2x=1含有两个未知数.未知数的最高次数是2次,∴x2﹣y﹣2x=1不是二元一次方程;C、3x﹣y=1含有两个未知数,未知数的最大次数是1次,∴3x﹣y=1是二元一次方程;D、﹣2y=1含有两个未知数,但分母上含有未知数,不是整式方程,∴﹣2y=1不是二元一次方程.故选:C.【点睛】此题主要考查了二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.5、B【解析】【分析】设绳子长x尺,长木长y尺,根据“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺”,可得出关于x,y的二元一次方程组.【详解】解:设绳子长x尺,长木长y尺,依题意,得:,故选:B.【点睛】本题考查了二元一次方程组的应用以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.6、D【解析】【分析】根据二元一次方程的定义逐一排除即可.【详解】解:A、=y+5x不是二元一次方程,因为不是整式方程;B、3x+1=2xy不是二元一次方程,因为未知数的最高项的次数为2;C、x=y2+1不是二元一次方程,因为未知数的最高项的次数为2;D、x+y=1是二元一次方程.故选:D.【点睛】此题主要考查了二元一次方程定义关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.7、B【解析】【分析】设合伙人数为人,牛价为 钱,根据“若每人出6钱,还差40钱;若每人出8钱,多余4钱,”列出方程组,即可求解.【详解】解:设合伙人数为人,牛价为 钱,根据题意得: .故选:B【点睛】本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.8、A【解析】【分析】根据二元一次方程的定义解答即可.【详解】解:A、该方程符合二元一次方程的定义,符合题意.B、该方程是二元二次方程,不符合题意.C、该方程是一元二次方程,不符合题意.D、该方程是一元一次方程,不符合题意.故选:A.【点睛】本题主要考查了二元一次方程的定义,含有两个未知数且每个未知数的次数均为1的方程是二元一次方程.9、C【解析】【分析】根据加减消元法,由①+②得出11x=33,求出x,再把x=3代入①求出y即可.【详解】解:,由①+②,得11x=33,解得:x=3,把x=3代入①,得9+2y=13,解得:y=2,所以方程组的解是,故选:C.【点睛】本题考查了解二元一次方程组,解题的关键是掌握加减消元法解方程组.10、D【解析】【分析】把m看作已知数表示出方程组的解,由方程组的解为整数解确定出m的值,代入原式计算即可求出值.【详解】解:,①-②得:(m-3)x=10,解得:x=,把x=代入②得:y=,由方程组为整数解,得到m-3=±1,m-3=±5,解得:m=4,2,-2,8,由m为正整数,得到m=4,2,8则=4或16或64,故选:D.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.二、填空题1、【解析】【分析】相等关系有两个:两天行军的路程之和为98km,第一天行军的路程加上2km等于第二天的行军路程,再列方程组即可.【详解】解:设第一天行军的平均速度为x km/h,第二天行军的平均速度为y km/h,则故答案为:【点睛】本题考查的是二元一次方程组的应用,“确定相等关系列方程组”是解本题的关键.2、1或2##2或1【解析】【分析】设租用型车辆,型车辆,再列方程再求解方程的正整数解即可.【详解】解:设租用型车辆,型车辆,则 由题意得:为正整数,或 所以租用型车1辆或2辆,故答案为:1或2【点睛】本题考查的是二元一次方程的正整数解的应用,掌握“利用二次元一次方程的正整数解确定方案”是解本题的关键.3、58【解析】【分析】设原来的两位数的十位数字为x,个位数字为y,根据“个位数字和十位数字的和是13,如果将个位数字和十位数字对调后得到的新数比原数大27”,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入(10x+y)中即可求出结论.【详解】解:设原来的两位数的十位数字为x,个位数字为y,依题意得:,解得:,∴10x+y=58.故答案为:58.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.4、﹣5【解析】【分析】根据方程的解的定义,将代入方程kx−3y=1,可得−2k−9=1,故k=−5.【详解】解:由题意得:﹣2k﹣3×3=1.∴k=﹣5.故答案为:﹣5.【点睛】本题属于简单题,主要考查方程的解的定义,即使得方程成立的未知数的值.5、 三个 次数 1【解析】【分析】由题意直接利用三元一次方程的定义进行填空即可.【详解】解:含有三个未知数,并且含有未知数的项的次数都是1,这样的方程叫做三元一次方程.故答案为:三个,次数,1.【点睛】本题考查三元一次方程的定义,注意掌握含有三个未知数,并且含有未知数的项的次数都是1,这样的方程叫做三元一次方程.三、解答题1、【解析】【详解】解:,用②①,得:,解得:,将代入①,得:,解得:,方程组的解为.【点睛】此题考查了解二元一次方程组,正确掌握解方程组的方法:代入法和加减法并应用解决问题是解题的关键.2、笔记本每本的价格是4元,水笔每支1.5元,练习本每本0.5元.【解析】【分析】设笔记本每本的价格是x元,水笔每支y元,练习本或作文本每本的价格为z元,根据林芳、向民、艳君三个人的话可以建立三个方程,从而构成三元一次方程组,求出其解即可.【详解】设笔记本每本的价格是x元,水笔每支y元,练习本或作文本每本的价格为z元,由题意得 解得 答:笔记本每本的价格是4元,水笔每支1.5元,练习本每本0.5元.【点睛】本题考查了列三元一次方程组解实际问题的运用,三元一次方程组的解法的运用,解答时找准等量关系建立方程是关键.3、 (1)1212,4(2),【解析】【分析】(1)根据“虎虎生威数”的定义和进行计算求解即可;(2)根据求出和,再根据是11的倍数,求出q的值,根据求出p的值即可.(1)解:根据“虎虎生威数”的定义可知千位上的数最小为1,则百位上的数为2,十位上的数最小为1,则个位上的数为2,最小的虎虎生威数是1212;;故答案为:1212,4.(2)解:∵p,q都是虎虎生威数,,∴,,;同理;∵是11的倍数,,∴,;∵,∴,即,∵,∴,.【点睛】本题考查了新定义和二元一次方程,解题关键是准确理解题意,列出二元一次方程求解.4、 (1)甲种消毒液购买了100瓶,乙种消毒液购买了300瓶.(2)这批消毒液可使用10天.【解析】【分析】(1)设甲种消毒液购买x瓶,乙种消毒液购买y瓶,由甲、乙两种免洗手消毒液共400瓶,其中甲消毒液15元/瓶,乙消毒液20元/瓶,列二元一次方程组求解即可;(2)设这批消毒液可使用a天,由该校在校师生共1800人,平均每人每天都需使用10ml的免洗手消毒液,然后列出方程可求解即可.(1)解:设甲种消毒液购买了x瓶,乙种消毒液购买了y瓶,依题意得:,解得:.答:甲种消毒液购买了100瓶,乙种消毒液购买了300瓶.(2)解:设这批消毒液可使用a天,由题意可得:1800×10×a=100×300+300×500,解得:a=10,答:这批消毒液可使用10天.【点睛】本题主要考查了二元一次方程组的应用、一元一次方程的应用,根据题意设出合适未知数、正确列出方程和方程组是解答本题的关键.5、【解析】【分析】把方程组整理后,利用加减消元法求解即可.【详解】解:原方程组可化为,②-①得:6y=12,解得:y=2,代入①中,解得:x=,∴方程组的解为.【点睛】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.
相关试卷
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试练习题,共19页。试卷主要包含了用代入消元法解关于等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试课后测评,共19页。试卷主要包含了有下列方程,已知,则,已知是方程的解,则k的值为等内容,欢迎下载使用。
这是一份数学七年级下册第六章 二元一次方程组综合与测试综合训练题,共17页。试卷主要包含了有下列方程等内容,欢迎下载使用。