![2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系综合测评试题(含解析)01](http://img-preview.51jiaoxi.com/2/3/12714094/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系综合测评试题(含解析)02](http://img-preview.51jiaoxi.com/2/3/12714094/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系综合测评试题(含解析)03](http://img-preview.51jiaoxi.com/2/3/12714094/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
七年级下册第十五章 平面直角坐标系综合与测试复习练习题
展开七年级数学第二学期第十五章平面直角坐标系综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、小明在介绍郑州外国语中学位置时,相对准确的表述为( )
A.陇海路以北 B.工人路以西
C.郑州市人民政府西南方向 D.陇海路和工人路交叉口西北角
2、△ABC在平面直角坐标系中的位置如图所示,将其绕点P顺时针旋转得到△A'B'C′,则点P的坐标是( )
A.(4,5) B.(4,4) C.(3,5) D.(3,4)
3、如图在平面直角坐标系中,点N与点F关于原点O对称,点F的坐标是(3,2),则点N的坐标是( )
A.(﹣3,﹣2) B.(﹣3,2) C.(﹣2,3) D.(2,3)
4、在平面直角坐标系中,点A的坐标为(﹣4,3),若AB∥x轴,且AB=5,当点B在第二象限时,点B的坐标是( )
A.(﹣9,3) B.(﹣1,3) C.(1,﹣3) D.(1,3)
5、若点在第一象限,则a的取值范围是( )
A. B. C. D.无解
6、已知点A(n,3)在y轴上,则点B(n-1,n+1)在第()象限
A.四 B.三 C.二 D.一
7、在平面直角坐标系xOy中,若在第三象限,则关于x轴对称的图形所在的位置是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
8、如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2021秒时,点P的坐标是( )
A.(2020,0) B.(2021,1) C.(2021,0) D.(2022,﹣1)
9、如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,,是斜边在x轴上,斜边长分别为2,4,6,...的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为( )
A.-1008 B.-1010 C.1012 D.-1012
10、点P的坐标为(﹣3,2),则点P位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在平面直角坐标系中,点与,关于y轴对称,则的值为____________.
2、如图,在平面直角坐标系中,点P1的坐标为(,),将线段OP1绕点O按顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2;又将线段OP2绕点O按顺时针方向旋转45°,长度伸长为OP2的2倍,得到线段OP3;如此下去,得到线段OP4,OP5,…,OPn(n为正整数),则点P2020的坐标是________.
3、平面直角坐标系中,点P(-2,-5)到x轴距离是____.
4、点P(﹣2,﹣4)关于y轴对称的点的坐标是_________.
5、点与点关于x轴对称,则的值为___________.
三、解答题(10小题,每小题5分,共计50分)
1、如图,在平面直角坐标系中,已知点A(﹣1,5),B(﹣3,1)和C(4,0).
(1)平移线段AB,使点A平移到点C,画出平移后所得的线段CD,并写出点D的坐标;
(2)将线段AB绕点A逆时针旋转90°,画出旋转后所得的线段AE,并写出点E的坐标;
(3)线段MN与线段AB关于原点成中心对称,点A的对应点为点M,
①画出线段MN并写出点M的坐标;
②直接写出线段MN与线段CD的位置关系.
2、已知点A(a+2b,1),B(﹣2,2a﹣b),若点A,B关于y轴对称,求a+b的值.
3、如图所示的方格纸中每个小方格都是边长为1个单位的正方形,建立如图所示的平面直角坐标系.
(1)请写出△ABC各点的坐标A B C ;
(2)若把△ABC向上平移2个单位,再向右平移2个单位得,在图中画出,
(3)求△ABC 的面积
4、如图,在平面直角坐标系中,已知A(1,4)、B(3,1)、C(3,5),△ABC关于y轴的对称图形为△A1B1C1
(1)请画出△ABC关于y轴对称图形△A1B1C1,并写出三个顶点的坐标A1( ), B1( ),C1( )
(2)在y轴上取点D,使得△ABD为等腰三角形,这样的点D共有 个
5、如图,已知△ABC各顶点的坐标分别为A(-3,2),B(-4,-3),C(-1,-1).
(1)请在图中画出△ABC关于y轴对称的△A1B1C1,
(2)并写出△A1B1C1的各点坐标.
6、如图,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3).
(1)作出△ABC关于y轴的对称图形△A'B'C';
(2)写出点A',B',C'的坐标;
(3)在y轴上找一点P,使PA+PC的长最短.
7、在平面直角坐标系xOy中,直线l:x=m表示经过点(m,0),且平行于y轴的直线.给出如下定义:将点P关于x轴的对称点,称为点P的一次反射点;将点关于直线l的对称点,称为点P关于直线l的二次反射点.例如,如图,点M(3,2)的一次反射点为(3,-2),点M关于直线l:x=1的二次反射点为(-1,-2).
已知点A(-1,-1),B(-3,1),C(3,3),D(1,-1).
(1)点A的一次反射点为 ,点A关于直线:x=2的二次反射点为 ;
(2)点B是点A关于直线:x=a的二次反射点,则a的值为 ;
(3)设点A,B,C关于直线:x=t的二次反射点分别为,,,若△与△BCD无公共点,求t的取值范围.
8、如图,在直角坐标系中按要求作图,所画图形的顶点必须与每个小正方形的顶点重合.
(1)画出一个面积等于9的等腰直角三角形ABC,使△ABC的三个顶点在坐标轴上,且△ABC关于y轴对称,其中点A的坐标为(0,3);(点B在点C的左侧)
(2)将△ABC向下平移3个单位,再向右平移1个单位得到△A1B1C1(点A、B、C的对应点分别为点A1、B1、C1),画出△A1B1C1,并直接写出A1C的长.
9、如图,在平面直角坐标系中,A(1,4)、B(2,1)、C(﹣3,2).
(1)作△ABC关于x轴对称图形△A'B'C';
(2)求△CAA'的面积.
10、马来西亚航空公司MH370航班自失联以来,我国派出大量救援力量,竭尽全力展开海上搜寻行动.某天中国海巡01号继续在南印度洋海域搜索,发现了一个位于东经101度,南纬25度的可疑物体.如果约定“经度在前,纬度在后”,那么我们可以用有序数对(101,25)表示该可疑物体的位置,仿照此表示方法,东经116度,南纬38度如何用有序数对表示?
-参考答案-
一、单选题
1、D
【分析】
根据位置的确定需要两个条件:方向和距离进行求解即可.
【详解】
解:A、陇海路以北只有方向,不能确定位置,故不符合题意;
B、工人路以西只有方向,不能确定位置,故不符合题意;
C、郑州市人民政府西南方向只有方向,不能确定位置,故不符合题意;
D、陇海路和工人路交叉口西北角,是两个方向的交汇处,可以确定位置,符合题意;
故选D.
【点睛】
本题主要考查了确定位置,熟知确定位置的条件是解题的关键.
2、B
【分析】
对应点的连线段的垂直平分线的交点,即为所求.
【详解】
解:如图,点即为所求,,
故选:B.
【点睛】
本题考查坐标与图形变化旋转,解题的关键是理解对应点的连线段的垂直平分线的交点即为旋转中心.
3、A
【分析】
根据点F点N关于原点对称,即可求解.
【详解】
解:∵F点与N点关于原点对称,点F的坐标是(3,2),
∴N点坐标为(﹣3,﹣2).
故选:A
【点睛】
本题主要考查了关于原点对称的点的坐标特征,熟练掌握若两点关于原点对称,横纵坐标均互为相反数是解题的关键.
4、A
【分析】
根据平行及线段长度、点B在第二象限,可判断点B一定在点A的左侧,且两个点纵坐标相同,再由线段长即可确定点B的坐标.
【详解】
解:∵轴,且,点B在第二象限,
∴点B一定在点A的左侧,且两个点纵坐标相同,
∴,即,
故选:A.
【点睛】
题目主要考查坐标系中点的坐标,理解题意,掌握坐标系中点的特征是解题关键.
5、B
【分析】
由第一象限内的点的横纵坐标都为正数,可列不等式组,再解不等式组即可得到答案.
【详解】
解: 点在第一象限,
由①得:
由②得:
故选B
【点睛】
本题考查的是根据点所在的象限求解字母的取值范围,掌握坐标系内点的坐标特点是解本题的关键.
6、C
【分析】
直接利用y轴上点的坐标特点得出n的值,进而得出答案.
【详解】
解:∵点A(n,3)在y轴上,
∴n=0,
则点B(n-1,n+1)为:(-1,1),在第二象限.
故选:C.
【点睛】
本题主要考查了点的坐标,正确得出n的值是解题关键.
7、B
【分析】
设内任一点A(a,b)在第三象限内,可得a<0,b<0,关于x轴对称后的点B(-a,b),则﹣a>0,b<0,然后判定象限即可.
【详解】
解:∵设内任一点A(a,b)在第三象限内,
∴a<0,b<0,
∵点A关于x轴对称后的点B(a,-b),
∴﹣b>0,
∴点B(a,-b)所在的象限是第二象限,即在第二象限.
故选:B.
【点睛】
本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键.
8、C
【分析】
根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标.
【详解】
解:半径为1个单位长度的半圆的周长为2π×1=π,
∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,
∴点P每秒走个半圆,
当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),
当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),
当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),
当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),
当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),
当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),
…,
∵2021÷4=505余1,
∴P的坐标是(2021,1),
故选:C.
【点睛】
此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.
9、C
【分析】
首先确定角码的变化规律,利用规律确定答案即可.
【详解】
解:∵各三角形都是等腰直角三角形,
∴直角顶点的纵坐标的长度为斜边的一半,
A3(0,0),A7(2,0),A11(4,0)…,
∵2021÷4=505余1,
∴点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)÷2=1012,
∴A2021的坐标为(1012,0).
故选:C
【点睛】
本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键.
10、B
【分析】
根据平面直角坐标系中四个象限中点的坐标特点求解即可.
【详解】
解:∵点P的坐标为(﹣3,2),
∴则点P位于第二象限.
故选:B.
【点睛】
此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.
二、填空题
1、5
【分析】
关于轴对称的两个点的横坐标互为相反数,纵坐标不变,根据原理直接求解的值,再代入进行计算即可.
【详解】
解: 点与,关于y轴对称,
故答案为:5
【点睛】
本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的横坐标互为相反数,纵坐标不变”是解本题的关键.
2、(0,)
【分析】
根据题意得出OP1=1,OP2=2,OP3=4,如此下去,得到线段OP4=8=23,OP5=16=24…,OPn=2n-1,再利用旋转角度得出点P2020的坐标与点P4的坐标在同一直线上,进而得出答案.
【详解】
解:∵点P1的坐标为(,),将线段OP1绕点O按顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2;
∴OP1=1,OP2=2,
∴OP3=4,如此下去,得到线段OP4=23,OP5=24…,
∴OPn=2n-1,
由题意可得出线段每旋转8次旋转一周,
∵2020÷8=252…4,
∴点P2020的坐标与点P4的坐标在同一直线上,正好在y轴的负半轴上,
∴点P2020的坐标是(0,).
故答案为:(0,).
【点睛】
此题主要考查了点的变化规律,根据题意得出点P2020的坐标与点P4的坐标在同一直线上是解题关键.
3、5
【分析】
根据点到x轴的距离等于纵坐标的绝对值解答即可.
【详解】
解:点P(-2,-5)到x轴的距离是5.
故答案为:5.
【点睛】
本题考查了点到坐标轴的距离,熟记点到x轴的距离等于纵坐标的绝对值是解题的关键.
4、(2,﹣4)
【分析】
根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.
【详解】
解:点P(-2,-4)关于y轴对称的点的坐标是(2,-4).
故答案为:(2,-4).
【点睛】
本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.
5、5
【分析】
根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得a与b的值,再代入计算即可.
【详解】
解:点与点关于x轴对称,
,,
则,
故答案为.
【点睛】
此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律.
三、解答题
1、(1)作图见解析,点D的坐标为(2,-4);(2)作图见解析,点E的坐标为(3,3);(3)①作图见解析,点M的坐标为(1,-5);②MN∥CD.
【分析】
(1)根据点A平移到点C,即可得到平移的方向和距离,进而画出平移后所得的线段CD;
(2)根据线段AB绕点A逆时针旋转90°,即可画出旋转后所得的线段AE;
(3)①分别作出A,B的对应点M,N,连接即可;
②由平行线的传递性可得答案.
【详解】
解:(1)如图所示,线段CD即为所求,点D的坐标为(2,-4);
(2)如图所示,线段AE即为所求,点E的坐标为(3,3);
(3)①如图所示,线段MN即为所求,点M的坐标为(1,-5);
②∵线段MN与线段AB关于原点成中心对称,
∴MN∥AB,
∵线段CD是由线段AB平移得到的,
∴CD∥AB,
∴MN∥CD.
【点睛】
本题主要考查了利用平移变换和旋转变换作图,解题的关键是理解题意,灵活运用所学知识解决问题.
2、
【分析】
根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”列方程组求出a、b的值,然后相加计算即可得解.
【详解】
解:∵点A(a+2b,1),B(﹣2,2a﹣b)关于y轴对称,
∴,
解得,
∴a+b=.
【点睛】
本题考查了关于y轴对称的点的坐标特征,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
3、(1);(2)见解析;(3)7
【分析】
(1)根据平面直角坐标系直接写出点的坐标即可;
(2)分别将点的横坐标和纵坐标都加2得到,并顺次连接,则即为所求
(3)根据长方形减去三个三角形的面积即可求得△ABC 的面积
【详解】
(1)根据平面直角坐标系可得
故答案为:
(2)如图所示,分别将点的横坐标和纵坐标都加2得到,并顺次连接,则即为所求
(3)的面积等于
【点睛】
本题考查了坐标与图形,平移作图,掌握平移的性质是解题的关键.
4、(1)见解析;-1,4 ;-3,1;-3,5;(2)5
【分析】
(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;
(2)分AB为腰和AB为底分别求解可得.
【详解】
解:(1)如图所示,△A1B1C1即为所求.
A1(-1,4) ;B1(-3,1);C1(-3,5);
故答案为:-1,4 ;-3,1;-3,5;
(2)以点A为顶点、AB为腰的等腰三角形ABD,且点D在y轴上的有2个;
以点B为顶点,BA为腰的等腰△ABD,且点D在y轴上的有2个;
以AB为底边的等腰三角形,且点D在y轴上的点只有1个;
所以这样的点D共有5个,
故答案为:5.
【点睛】
本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质,并据此得出变换后的对应点.
5、(1)见解析;(2)A1(3,2),B1(4,-3),C1(1,-1).
【分析】
(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可;
(2)根据所作图形可得答案.
【详解】
解:(1)如图所示,△A1B1C1即为所求作.
(2)由图可知,A1(3,2),B1(4,-3),C1(1,-1).
【点睛】
本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点.注意:关于x轴对称的点,横坐标相同,纵坐标互为相反数.
6、(1)见解析;(2)A′(1,5),B′(1,0),C′(4,3);(3)见解析
【分析】
(1)分别作出点A、B、C关于y轴的对称点,再收尾顺次连接即可得;
(2)根据△A'B'C'各顶点的位置,写出其坐标即可;
(3)连接PC,则PC=PC′,根据两点之间线段最短,可得PA+PC的值最小.
【详解】
解:(1)如图所示,△A′B′C′为所求作;
(2)由图可得,A′(1,5),B′(1,0),C′(4,3);
(3)如图所示,连接AC′,交y轴于点P,则点P即为所求作.
【点睛】
本题主要考查了利用轴对称变换作图以及最短距离的问题,解题时注意:凡是涉及最短距离的问题,一般要考虑线段的性质定理,运用轴对称变换来解决,多数情况要作点关于某直线的对称点.关于y轴对称的点,纵坐标相同,横坐标互为相反数.
7、(1)(-1,1);(5,1);(2)-2;(3)<-2或>1.
【分析】
(1)根据一次反射点和二次反射点的定义求解即可;
(2)根据二次反射点的意义求解即可;
(3)根据题意得,,,分<0和>0时△与△BCD无公共点,求出t的取值范围即可.
【详解】
解:(1)根据一次反射点的定义可知,A(-1,-1)一次反射点为(-1,1),
点A关于直线:x=2的二次反射点为(5,1)
故答案为: (-1,1);(5,1).
(2)∵A(-1,-1),B(-3,1),且点B是点A关于直线:x=a的二次反射点,
∴
解得,
故答案为: -2.
(3)由题意得,(-1,1),(-3,-1),(3,-3),点D(1,-1)在线段上.
当<0时,只需关于直线=的对称点在点B左侧即可,如图1.
∵当与点B重合时,=-2,
∴当<-2时,△与△BCD无公共点.
当>0时,只需点D关于直线x=的二次反射点在点D右侧即可,如图2,
∵当与点D重合时,=1,
∴当>1时,△与△BCD无公共点.
综上,若△与△BCD无公共点,的取值范围是<-2,或>1.
【点睛】
本题考查了轴对称性质,动点问题,新定义二次反射点的理解和运用;解题关键是对新定义二次反射点的正确理解.
8、(1)见解析;(2)画图见解析,A1C的长为4.
【详解】
解:(1)如图,△ABC即为所求.
∵AO=BO=CO=3,且AO⊥BC,
∴∠BAO=∠CAO=45°,△ABC的面积=BCAO=9,
∴∠BAC=90°,且△ABC关于y轴对称;
(2)如图,△A1B1C1即为所求.
如图,A1C的长为4.
【点睛】
本题考查了根据平移变换作图以及等腰直角三角形的判定和性质,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.
9、(1)见解析;(2)16
【分析】
(1)分别作出三个顶点关于x轴的对称点,再首尾顺次连接即可;
(2)直接根据三角形的面积公式求解即可.
【详解】
解:(1)如图所示,△A'B'C'即为所求.
(2)△CAA'的面积为×8×4=16.
【点睛】
本题主要考查作图—轴对称变换,解题的关键是掌握轴对称变换的定义和性质.
10、东经度,南纬度可以表示为.
【分析】
根据“经度在前,纬度在后”的顺序,可以将东经度,南纬度用有序数对表示.
【详解】
解:由题意可知东经度,南纬度,可用有序数对表示.
故东经度,南纬度表示为.
【点睛】
本题考察了用有序数对表示位置.解题的关键在于读懂题意中给定的规则.
初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后练习题: 这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后练习题,共30页。试卷主要包含了在平面直角坐标系中,点P等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步测试题: 这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步测试题,共27页。试卷主要包含了在平面直角坐标系中,点,一只跳蚤在第一象限及x轴,点M,点A个单位长度.等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步练习题: 这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步练习题,共31页。试卷主要包含了点在第四象限,则点在第几象限等内容,欢迎下载使用。