![2021-2022学年沪教版七年级数学第二学期第十五章平面直角坐标系综合测评试题(含解析)第1页](http://img-preview.51jiaoxi.com/2/3/12711740/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年沪教版七年级数学第二学期第十五章平面直角坐标系综合测评试题(含解析)第2页](http://img-preview.51jiaoxi.com/2/3/12711740/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年沪教版七年级数学第二学期第十五章平面直角坐标系综合测评试题(含解析)第3页](http://img-preview.51jiaoxi.com/2/3/12711740/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试当堂检测题
展开
这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试当堂检测题,共30页。试卷主要包含了已知点A等内容,欢迎下载使用。
七年级数学第二学期第十五章平面直角坐标系综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、点向上平移2个单位后与点关于y轴对称,则( ).
A.1 B. C. D.
2、如图,每个小正方形的边长为1,在阴影区域的点是( )
A.(1,2) B.(﹣1,﹣2) C.(﹣1,2) D.(1,﹣2)
3、直角坐标系中,点A(-3,4)与点B(3,-4)关于( )
A.原点中心对称 B.轴轴对称 C.轴轴对称 D.以上都不对
4、在平面直角坐标系中,点关于轴的对称点的坐标是( )
A. B. C. D.
5、△ABC在平面直角坐标系中的位置如图所示,将其绕点P顺时针旋转得到△A'B'C′,则点P的坐标是( )
A.(4,5) B.(4,4) C.(3,5) D.(3,4)
6、如图,的顶点坐标为,,,若将绕点按顺时针方向旋转90°,再向左平移2个单位长度,得到,则点的对应点的坐标是( ).
A. B. C. D.
7、在平面直角坐标系中,已知点A(-4,3)与点B关于y轴对称,则点B的坐标为( )
A.(-4,-3) B.(4,3) C.(4,-3) D.(-4,3)
8、已知点A(﹣2,a)和点B(2,﹣3)关于原点对称,则a的值为( )
A.2 B.﹣2 C.3 D.﹣3
9、点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为( )
A.(-4,3) B.(4,-3) C.(-3,4) D.(3,-4)
10、在平面直角坐标系中,点A的坐标为.作点A关于x轴的对称点,得到点,再将点向左平移2个单位长度,得到点,则点所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点O出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2021的坐标为_____.
2、已知点在第二象限,且离轴的距离为3,则____.
3、在平面直角坐标系中,轰炸机机群的一个飞行队形如图所示,若其中两架轰炸机的坐标分别表示为A(1,3)、B(3,1),则轰炸机C的坐标是_________.
4、如图,直角坐标平面xoy内,动点P按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),…按这样的运动规律,动点P第2022次运动到点的坐标是_____.
5、如图,有一个英文单词,它的各个字母的位置依次是,,,,,所对应的字母,如对应的字母是,则这个英文单词为_____.
三、解答题(10小题,每小题5分,共计50分)
1、如图,在平面直角坐标系中,已知点A(2,﹣2),点P是x轴上的一个动点.
(1)A1,A2分别是点A关于原点的对称点和关于y轴对称的点,直接写出点A1,A2的坐标,并在图中描出点A1,A2.
(2)求使△APO为等腰三角形的点P的坐标.
2、如图,方格图中每个小正方形的边长为1,点A,B,C都是格点.
(1)画出△ABC关于直线MN对称的.
(2)若B为坐标原点,请写出、、的坐标,并直接写出的长度..
(3)如图2,A,C是直线同侧固定的点,D是直线MN上的一个动点,在直线MN上画出点D,使最小.(保留作图痕迹)
3、如图,在平面直角坐标系中,点B的坐标是,点C的坐标为,CB交x轴负半轴于点A,过点B作射线,作射线CD交BM于点D,且
(1)求证:点A为线段BC的中点.
(2)求点D的坐标.
4、如图所示,在平面直角坐标系中,已知,,.
(1)在平面直角坐标系中画出,并求出的面积;
(2)在(1)的条件下,把先关于y轴对称得到,再向下平移3个单位得到,则中的坐标分别为( ),( ),( );(直接写出坐标)
(3)已知为轴上一点,若的面积为4,求点的坐标.
5、已知点A(1,﹣1),B(﹣1,4),C(﹣3,1).
(1)请在如图所示的平面直角坐标系中(每个小正方形的边长都为1)画出△ABC;
(2)作△ABC关于x轴对称的△DEF,其中点A,B,C的对应点分别为点D,E,F;
(3)连接CE,CF,请直接写出△CEF的面积.
6、如图,在直角坐标系中,A(-1,5),B(-3,0),C(-4,3).
(1)在图中作出△ABC关于y轴对称的图形△A1B1C1;
(2)写出点A1 ,B1 ,C1 的坐标.
7、在平面直角坐标系xOy中,对于任意图形G及直线l1,l2,给出如下定义:将图形G先沿直线l1翻折得到图形G1,再将图形G1沿直线l2翻折得到图形G2,则称图形G2是图形G的伴随图形.
例如:点P(2,1)的伴随图形是点P'(-2,-1).
(1)点Q(-3,-2)的伴随图形点Q'的坐标为 ;
(2)已知A(t,1),B(t-3,1),C(t,3),直线m经过点(1,1).
①当t=-1,且直线m与y轴平行时,点A的伴随图形点A'的坐标为 ;
②当直线m经过原点时,若△ABC的伴随图形上只存在两个与x轴的距离为1的点,直接写出t的取值范围.
8、已知点P(3a﹣15,2﹣a).
(1)若点P到x轴的距离是1,试求出a的值;
(2)在(1)题的条件下,点Q如果是点P向上平移3个单位长度得到的,试求出点Q的坐标;
(3)若点P位于第三象限且横、纵坐标都是整数,试求点P的坐标.
9、在平面直角坐标系中描出以下各点:A(3,2)、B(-1,2)、C(-2,-1)、D(4,-1).顺次连接A、B、C、D得到四边形ABCD;
10、如图,在正方形网格中,每个小正方形的边长均为1,ABC的三个顶点都在格点上,结合所给的平面直角坐标系,解答下列问题:
(1)请画出ABC关于x轴成轴对称的A1B1C1,并写出点A1的坐标;
(2)请画出ABC关于点O成中心对称的A2B2C2,并写出点A2的坐标;
(3)A1B1C1与A2B2C2关于某直线成轴对称吗?若是,请写出对称轴;若不是,请说明理由.
-参考答案-
一、单选题
1、D
【分析】
利用平移及关于y轴对称点的性质即可求解.
【详解】
解:把向上平移2个单位后得到点 ,
∵点与点关于y轴对称,
∴ , ,
∴ ,
∴,
故选:D.
【点睛】
本题考查坐标与图形变化平移、轴对称的性质及负整数指数幂,解题关键是掌握平移、轴对称的性质及负整数指数幂.
2、C
【分析】
根据平面直角坐标系中点的坐标的表示方法求解即可.
【详解】
解:图中阴影区域是在第二象限,
A.(1,2)位于第一象限,故不在阴影区域内,不符合题意;
B.(-1,-2)位于第三象限,故不在阴影区域内,不符合题意;
C.(﹣1,2)位于第二象限,其横纵坐标的绝对值不超过3,故在阴影区域内,符合题意;
D. (1,-2)位于第四象限,故不在阴影区域内,不符合题意.
故选:C.
【点睛】
此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.
3、A
【分析】
观察点A与点B的坐标,依据关于原点中心对称的点,横坐标与纵坐标都互为相反数可得答案.
【详解】
根据题意,易得点(-3,4)与(3,-4)的横、纵坐标互为相反数,则这两点关于原点中心对称.
故选A.
【点睛】
本题考查在平面直角坐标系中,关于原点中心对称的两点的坐标之间的关系.掌握关于原点对称的点,横坐标与纵坐标都互为相反数是解答本题的关键.
4、B
【分析】
根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.
【详解】
解:点P(2,-1)关于x轴的对称点的坐标为(2,1),
故选:B.
【点睛】
此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标的变化规律.
5、B
【分析】
对应点的连线段的垂直平分线的交点,即为所求.
【详解】
解:如图,点即为所求,,
故选:B.
【点睛】
本题考查坐标与图形变化旋转,解题的关键是理解对应点的连线段的垂直平分线的交点即为旋转中心.
6、A
【分析】
画出旋转平移后的图形即可解决问题.
【详解】
解:旋转,平移后的图形如图所示,,
故选:A
【点睛】
本题考查坐标与图形变化−旋转,解题的关键是理解题意,学会利用图象法解决问题.
7、B
【分析】
利用y轴对称的点的坐标特征:横坐标互为相反数,纵坐标相等,即可求出点B的坐标.
【详解】
解:∵ A(-4,3) ,
∴关于y轴对称点B的坐标为(4,3).
故答案为:B.
【点睛】
本题主要是考查了y轴对称的点的坐标特征,熟练掌握关于不同坐标轴对称的点的坐标特征,是解决此类问题的关键.
8、C
【分析】
根据两个点关于原点对称时,它们横、纵坐标均互为相反数,即可求出a的值.
【详解】
解:∵点A(﹣2,a)和点B(2,﹣3)关于原点对称,
∴a=3,
故选:C.
【点睛】
此题考查的是关于原点对称的两点坐标关系,掌握关于原点对称的两点坐标关系:横、纵坐标均互为相反数是解决此题的关键.
9、C
【分析】
根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.
【详解】
解:∵点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,
∴点P的横坐标是-3,纵坐标是4,
∴点P的坐标为(-3,4).
故选C.
【点睛】
本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.
10、C
【分析】
根据题意结合轴对称的性质可求出点的坐标.再根据平移的性质可求出点的坐标,即可知其所在象限.
【详解】
∵点A的坐标为(1,3),点是点A关于x轴的对称点,
∴点的坐标为(1,-3).
∵点是将点向左平移2个单位长度得到的点,
∴点的坐标为(-1,-3),
∴点所在的象限是第三象限.
故选C.
【点睛】
本题考查轴对称的性质,平移中点的坐标的变化以及判断点所在的象限.根据题意求出点的坐标是解答本题的关键.
二、填空题
1、(-2,0)
【分析】
根据中心对称的性质找出部分Pn的坐标,根据坐标的变化找出变化规律“P6n(0,0),P6n+1(2,0),P6n+2(−2,2),P6n+3(0,−2),P6n+4(2,2),P6n+5(−2,0)(n为自然数)”,依此规律即可得出结论.
【详解】
解:观察,发现规律:
P0(0,0),P1(2,0),P2(−2,2),P3(0,−2),P4(2,2),P5(−2,0),P6(0,0),P7(2,0),…,
∴P6n(0,0),P6n+1(2,0),P6n+2(−2,2),P6n+3(0,−2),P6n+4(2,2),P6n+5(−2,0)(n为自然数).
∵2021=6×336+5,
∴P2020(-2,0).
故答案为:(-2,0).
【点睛】
本题考查了规律型中的点的坐标以及中心对称的性质,解题的关键是找出变化规律“P6n(0,0),P6n+1(2,0),P6n+2(−2,2),P6n+3(0,−2),P6n+4(2,2),P6n+5(−2,0)(n为自然数)”.本题属于基础题,难度不大,解决该题型题目时,根据题意列出部分Pn点的坐标,根据坐标的变化找出变化规律是关键.
2、8
【分析】
根据题意可得,求出的值,代入计算即可.
【详解】
解:点在第二象限,且离轴的距离为3,
,
解得,
.
故答案为:8.
【点睛】
本题考查了平面直角坐标系-点到坐标轴的距离,绝对值的意义,跟具体题意求出的值是解本题的关键.
3、
【分析】
直接利用已知点坐标得出原点位置,进而得出答案.
【详解】
解:如图所示,建立平面直角坐标系,
∴轰炸机C的坐标为(-1,-2),
故答案为:(-1,-2).
【点睛】
此题主要考查了坐标确定位置,正确得出原点位置建立坐标系是解题关键..
4、(2021,0)
【分析】
由图中点的坐标可得:每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2022除以4,再由商和余数的情况确定运动后点的坐标.
【详解】
由图中点的坐标可得:每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,
∵2022÷4=505余2,
∴第2022次运动为第505循环组的第2次运动,
横坐标为,纵坐标为0,
∴点P运动第2022次的坐标为(2021,0).
故答案为:(2021,0).
【点睛】
考查了点的坐标规律,解题关键是观察点的坐标变化,并寻找规律.
5、
【分析】
根据题目所给坐标,得出相应位置的字母,即可得出代表的英文单词.
【详解】
解:对应的字母为,
对应的字母为,
对应的字母为,
对应的字母为,
对应的字母为,
对应的字母为,
这个英文单词为:,
故答案为:.
【点睛】
本题考查了平面直角坐标系,能准确根据所给的坐标得出点的位置是解本题的关键.
三、解答题
1、(1)A1(﹣2,2),A1(﹣2,﹣2),见解析;(2)P点坐标为(﹣2,0)或(2,0)或(4,0)或(2,0)
【分析】
(1)利用关于原点对称和y轴对称的点的坐标特征写出点A1,A2的坐标,然后描点;
(2)先计算出OA的长,再分类讨论:当OP=OA或AP=AO或PO=PA时,利用直角坐标系分别写出对应的P点坐标.
【详解】
解:(1)A1(﹣2,2),A1(﹣2,﹣2),如图,
(2)如图,设P点坐标为(t,0),
,
当OP=OA时,P点坐标为或;
当AP=AO时,P点坐标为(4,0),
当PO=PA时,P点坐标为(2,0),
综上所述,P点坐标为或或(4,0)或(2,0).
【点睛】
本题考查的是轴对称的性质,中心对称的性质,坐标与图形,等腰三角形的定义,清晰的分类讨论是解本题的关键.
2、(1)画图见解析;(2),;(3)画图见解析
【分析】
(1)分别确定关于对称的对称点 再顺次连接从而可得答案;
(2)根据在坐标系内的位置直接写其坐标与的长度即可;
(3)先确定关于的对称点,再连接 交于 则 从而可得答案.
【详解】
解:(1)如图1,是所求作的三角形,
(2)如图1,为坐标原点,
则
(3)如图2,点即为所求作的点.
【点睛】
本题考查的是画轴对称图形,建立坐标系,用根据点的位置确定点的坐标,轴对称的性质,掌握“利用轴对称的性质得到两条线段和取最小值时点的位置”是解本题的关键.
3、(1)证明见解析,(2)(8,2).
【分析】
(1)过点C作CQ⊥OA于Q,证△CQA≌△BOA,即可证明点A为线段BC的中点;
(2)过点C作CR⊥OB于R,过点D作DS⊥OB于S,证△CRB≌△BSD,根据全等三角形对应边相等即可求点D的坐标.
【详解】
(1)证明:过点C作CQ⊥OA于Q,
∵点B的坐标是,点C的坐标为,
∴CQ=OB=4,
∵∠CQO=∠BOA=90°,∠CAQ=∠BAO,
∴△CQA≌△BOA,
∴CA=AB,
∴点A为线段BC的中点.
(2)过点C作CR⊥OB于R,过点D作DS⊥OB于S,
∵,
∴∠CRB=∠DSB=∠CBD=90°,
∴∠CBR+∠SBD=90°,∠SDB+∠SBD=90°,
∴∠CBR=∠SDB,
∵,
∴∠BCD=∠BDC=45°,
∴CB=DB,
∴△CRB≌△BSD,
∴CR=SB,RB=DS,
∵点B的坐标是,点C的坐标为,
∴CR=SB=6,RB=DS=8,
∴OS=SB-OB=2,
点D的坐标为(8,2).
【点睛】
本题考查了全等三角形的判定与性质和点的坐标,解题关键是树立数形结合思想,恰当作辅助线,构建全等三角形.
4、(1)见解析,4;(2)0,-2,-2,-3,-4,0;(3)或.
【分析】
(1)先画出△ABC,然后再利用割补法求△ABC得面积即可;
(2)先作出,然后结合图形确定所求点的坐标即可;
(3)先求出PB的长,然后分P在B的左侧和右侧两种情况解答即可.
【详解】
解:(1)画出如图所示:
的面积是:;
(2)作出如图所示,则(0,-2),( -2,-3),(-4,0)
故填:0,-2,-2,-3,-4,0;
(3)∵P为x轴上一点,的面积为4,
∴,
∴当P在B的右侧时,横坐标为:
当P在B的左侧时,横坐标为,
故P点坐标为:或.
【点睛】
本题主要考查了轴对称、三角形的平移、三角形的面积以及平面直角坐标系中点的坐标等知识点,根据题意画出图形成为解答本题的关键.
5、(1)作图见详解;(2)作图见详解;(3)的面积为2.
【分析】
(1)直接在坐标系中描点,然后依次连线即可;
(2)先确定A、B、C三点关于x轴对称的点的坐标,然后依次连接即可;
(3)根据三角形在坐标系中的位置,确定三角形的底和高,直接求面积即可.
【详解】
解:(1)如图所示,即为所求;
(2)A、B、C三点关于x轴对称的点的坐标分别为:,,,
然后描点、连线,
∴即为所求;
(3)由图可得:SΔCEF=12×2×2=2,
∴的面积为2.
【点睛】
题目主要考查在坐标系中作轴对称图形及点的坐标特点,熟练掌握轴对称图形的性质是解题关键.
6、(1)见解析;(2)(1,5),(3,0),(4,3)
【分析】
(1)根据对称性即可在图中作出△ABC关于y轴对称的图形△A1B1C1;
(2)结合(1)即可写出点A1,B1,C1的坐标.
【详解】
解:(1)如图,△A1B1C1即为所求;
(2)A1(1,5),B1(3,0),C1(4,3);
故答案为:(1,5),(3,0),(4,3).
【点睛】
本题考查了作图-轴对称变换,解决本题的关键是掌握轴对称性质.关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标相同.
7、
(1)(3,2)
(2)①(3,-1);②-1<t<1或2<t<4
【分析】
(1)点先关于轴对称的点坐标为,再关于轴对称的点坐标为,故可得点的伴随图形点坐标;
(2)①时,点坐标为,直线为,此时点先关于轴对称的点坐标为,再关于轴对称的点坐标为,进而得到点的伴随图形点坐标;②由题意知直线为直线,、、三点的轴,的伴随图形点坐标依次表示为:,,,由题意可得,或解出的取值范围即可.
(1)
解:由题意知沿轴翻折得点坐标为;
沿轴翻折得点坐标为
故答案为:.
(2)
①解:.,点坐标为,直线为,
沿轴翻折得点坐标为
沿直线翻折得点坐标为即为
故答案为:
②解:∵直线经过原点
∴直线为
∴、、的伴随图形点坐标先沿轴翻折,点坐标依次为,,;
然后沿直线翻折,点坐标依次表示为:,,
由题意可知:或
解得:或
【点睛】
本题考查了直角坐标系中的点对称,几何图形翻折.解题的关键在于正确的将翻折后的点坐标表示出来.
8、(1)或;(2)或;(3)或.
【分析】
(1)根据“点到轴的距离是1”可得,由此即可求出的值;
(2)先根据(1)的结论求出点的坐标,再根据点坐标的平移变换规律即可得;
(3)先根据“点位于第三象限”可求出的取值范围,再根据“点的横、纵坐标都是整数”可求出的值,由此即可得出答案.
【详解】
解:(1)点到轴的距离是1,且,
,即或,
解得或;
(2)当时,点的坐标为,
则点的坐标为,即,
当时,点的坐标为,
则点的坐标为,即,
综上,点的坐标为或;
(3)点位于第三象限,
,解得,
点的横、纵坐标都是整数,
或,
当时,,则点的坐标为,
当时,,则点的坐标为,
综上,点的坐标为或.
【点睛】
本题考查了点到坐标轴的距离、象限内点的坐标特点、点的坐标平移规律和一元一次不等式组的解法等知识,属于基础题,熟练掌握平面直角坐标系的基本知识是解题关键.
9、见解析
【分析】
根据各点的坐标描出各点,然后顺次连接即可
【详解】
解:如图所示:
【点睛】
本题考查了坐标与图形,熟练掌握相关知识是解题的关键
10、(1)画图见解析,点A1的坐标;(-4,3);(2)画图见解析,点A2的坐标(4,3);(3)△A1B1C1与△A2B2C2关于y轴成轴对称,对称轴为y轴.
【分析】
(1)分别作出A,B,C的对应点A1,B1,C1即可;
(2)分别作出A,B,C的对应点A2,B2,C2即可;
(3)根据轴对称的定义判断即可.
【详解】
解:(1)如图,△A1B1C1即为所求,点A的对应点A1的坐标;(-4,3);
(2)如图,△A2B2C2即为所求,点A2的坐标(4,3);
(3)△A1B1C1与△A2B2C2关于y轴成轴对称,对称轴为y轴.
【点睛】
本题考查作图-旋转变换,轴对称变换,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.注意:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
相关试卷
这是一份初中数学第十五章 平面直角坐标系综合与测试课后测评,共28页。试卷主要包含了一只跳蚤在第一象限及x轴,若平面直角坐标系中的两点A,已知点P,根据下列表述,能确定位置的是等内容,欢迎下载使用。
这是一份七年级下册第十五章 平面直角坐标系综合与测试复习练习题,共26页。试卷主要包含了已知点A象限等内容,欢迎下载使用。
这是一份初中第十五章 平面直角坐标系综合与测试课后测评,共33页。试卷主要包含了已知A,已知点M,点P关于原点O的对称点的坐标是,一只跳蚤在第一象限及x轴等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)