![2022年最新精品解析沪教版七年级数学第二学期第十五章平面直角坐标系同步测评试题第1页](http://img-preview.51jiaoxi.com/2/3/12712470/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析沪教版七年级数学第二学期第十五章平面直角坐标系同步测评试题第2页](http://img-preview.51jiaoxi.com/2/3/12712470/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析沪教版七年级数学第二学期第十五章平面直角坐标系同步测评试题第3页](http://img-preview.51jiaoxi.com/2/3/12712470/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后作业题
展开
这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后作业题,共27页。试卷主要包含了点P关于y轴对称点的坐标是.,已知点P,在平面直角坐标系中,点A等内容,欢迎下载使用。
七年级数学第二学期第十五章平面直角坐标系同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、平面直角坐标系中,下列在第二象限的点是( )A. B. C. D.2、点M(2,4)先向左平移3个单位长度,再向上平移2个单位长度得到的点的坐标是( )A.(-1,6) B.(-1,2) C.(-1,1) D.(4,1)3、点P(3,﹣2)关于原点O的对称点的坐标是( )A.(3,﹣2) B.(﹣3,2) C.(﹣3,﹣2) D.(2,3)4、点P(﹣1,2)关于y轴对称点的坐标是( ).A.(1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)5、已知点P(m+3,2m+4)在x轴上,那么点P的坐标为( )A.(-1,0) B.(1,0) C.(-2,0) D.(2,0)6、已知点关于x轴的对称点与点关于y轴的对称点重合,则( )A.5 B.1 C. D.7、在平面直角坐标系中,点A(0,3),B(2,1),经过点A的直线l∥x轴,C是直线l上的一个动点,当线段BC的长度最短时,点C的坐标为( )A.(0,1) B.(2,0) C.(2,﹣1) D.(2,3)8、在平面直角坐标系中,点P的位置如图所示,则点P的坐标可能是( )A.(4,2) B.(﹣4,2) C.(﹣4,﹣2) D.(2,4)9、在平面直角坐标系中,若点与点关于原点对称,则点在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限10、已知点M(m,﹣1)与点N(3,n)关于原点对称,则m+n的值为( )A.3 B.2 C.﹣2 D.﹣3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知点在第二象限,且离轴的距离为3,则____.2、已知点A(a﹣1,5)与点B(﹣3,b)关于x轴对称,则点C(a,b)关于y轴对称的点在第 _____象限.3、若点在y轴上,则m=_____.4、如图,边长为1的正六边形放置于平面直角坐标系中,边在轴正半轴上,顶点在轴正半轴上,将正六边形绕坐标原点顺时针旋转,每次旋转,那么经过第2022次旋转后,顶点的坐标为________.5、在平面直角坐标系中,点P(-3,7)关于原点对称的点的坐标是______.三、解答题(10小题,每小题5分,共计50分)1、如图,平面直角坐标系中ABC的三个顶点分别是A(-4,3),B(-2,4),C(-1,1).(1)将ABC绕点O逆时针旋转90°,画出旋转后的A1B1C1;(2)作出ABC关于点O的中心对称图形A2B2C2;(3)如果ABC内有一点P(a,b),请直接写出变换后的图形中对应点P1、P2的坐标.2、如图所示,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)在图中画出△ABC关于y轴的对称图形△A1B1C1,写出A1、B1、C1的坐标;(2)画出两条线段,将△ABC分成面积相等的三部分,要求所画线段的端点在格点上.3、如图,的顶点坐标分别为画出绕点顺时针旋转,得到并直接写出的面积.4、△ABC在平面直角坐标系中的位置如图所示,已知A(﹣2,3),B(﹣3,1),C(﹣1,2).(1)画出△ABC绕点O逆时针旋转90°后得到的△A1B1C1;(2)画出△ABC关于原点O的对称图形△A2B2C2;(3)直接写出下列点的坐标:A1 ,B2 .5、如图,在平面直角坐标系中,已知△ABC.(1)将△ABC向下平移6个单位,得,画出;(2)画出△ABC关于y轴的对称图形;(3)连接,并直接写出△A1A2C2的面积.6、如图,在平面直角坐标系中,线段AB的两个端点的坐标分别为A(﹣1,﹣2),B(﹣2,﹣4).(1)画出线段AB关于y轴对称的线段A1B1,再画出线段A1B1关于x轴对称的线段A2B2;(2)点A2的坐标为 ;(3)若此平面直角坐标系中有一点M(a,b),点M关于y轴对称的对称点M1,点M1关于x轴对称的对称点M2,则点M2的坐标为 .7、如图,在平面直角坐标系中,已知点A(﹣1,5),B(﹣3,1)和C(4,0).(1)平移线段AB,使点A平移到点C,画出平移后所得的线段CD,并写出点D的坐标;(2)将线段AB绕点A逆时针旋转90°,画出旋转后所得的线段AE,并写出点E的坐标;(3)线段MN与线段AB关于原点成中心对称,点A的对应点为点M,①画出线段MN并写出点M的坐标;②直接写出线段MN与线段CD的位置关系.8、如图,在直角坐标系中,点A(3,3),B(4,0),C(0,2).(1)画出△ABC关于原点O对称的△A1B1C1.(2)求△A1B1C1的面积.9、在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O及ABC的顶点都在格点上.(1)在图中作出DEF,使得DEE与ABC关于x轴对称;(2)写出D,E两点的坐标:D ,E .(3)求DEF的面积.10、如图,在平面直角坐标系中有一个△ABC,顶点A(-1,3),B(2,0),C(-3,-1).(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);点A关于x轴对称的点坐标为_______;点B关于y轴对称的点坐标为_______;(2)若网格上的每个小正方形的边长为1,则△ABC的面积是_______. -参考答案-一、单选题1、C【分析】由题意直接根据第二象限点的坐标特点,横坐标为负,纵坐标为正,进行分析即可得出答案.【详解】解:A、点(1,0)在x轴,故本选项不合题意;B、点(3,-5)在第四象限,故本选项不合题意;C、点(-1,8)在第二象限,故本选项符合题意;D、点(-2,-1)在第三象限,故本选项不合题意;故选:C.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2、A【分析】直接利用平移中点的变化规律求解即可,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】∵,,∴得到的点的坐标是.故选:A.【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.3、B【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数”解答.【详解】解:点P(3,﹣2)关于原点O的对称点P'的坐标是(﹣3,2).故选:B.【点睛】本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键.4、A【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(-x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出A的对称点的坐标,从而可以确定所在象限.【详解】解:∵点P(-1,2)关于y轴对称,∴点P(-1,2)关于y轴对称的点的坐标是(1,2).故选:A.【点睛】本题主要考查了平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.5、B【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.【详解】解:∵点P(m+3,2m+4)在x轴上,∴2m+4=0,解得:m=-2,∴m+3=-2+3=1,∴点P的坐标为(1,0).故选:B.【点睛】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.6、D【分析】点关于x轴的对称点(a,-2),点关于y轴的对称点(-3,b),根据(a,-2)与点(-3,b)是同一个点,得到横坐标相同,纵坐标相同,计算a,b计算即可.【详解】∵点关于x轴的对称点(a,-2),点关于y轴的对称点(-3,b),(a,-2)与点(-3,b)是同一个点,∴a=-3,b=-2,∴-5,故选D.【点睛】本题考查了坐标系中点的轴对称,熟练掌握对称时坐标的变化规律是解题的关键.7、D【分析】根据垂线段最短可知BC⊥l,即BC⊥x轴,由已知即可求解.【详解】解:∵点A(0,3),经过点A的直线l∥x轴,C是直线l上的一个动点,∴点C的纵坐标是3,根据垂线段最短可知,当BC⊥l时,线段BC的长度最短,此时, BC⊥x轴,∵B(2,1),∴点C的横坐标是2,∴点C坐标为(2,3),故选:D.【点睛】本题考查坐标与图形、垂线段最短,熟知图形与坐标的关系,掌握垂线段最短是解答的关键.8、A【分析】根据点在第一象限,结合第一象限点的横纵坐标都为正的进而即可判断【详解】解:由题意可知,点P在第一象限,且横坐标大于纵坐标,A.(4,2)在第一象限,且横坐标大于纵坐标,故本选项符合题意;B.(﹣4,2)在第二象限,故本选项符合题意;C.(﹣4,﹣2)在第三象限,故本选项符合题意;D.(2,4)在第一象限,但横坐标小于纵坐标,故本选项符合题意;故选:A.【点睛】本题考查了各象限点的坐标特征,掌握各象限点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.9、B【分析】根据点(x,y)关于原点对称的点的坐标为(﹣x,﹣y)可求得m、n值,再根据象限内点的坐标的符号特征即可解答.【详解】解:∵点与关于原点对称,∴m=-2,m-n=﹣3,∴n=1,∴点M(-2,1)在第二象限,故选:B.【点睛】本题考查平面直角坐标系中关于原点对称的点的坐标、点所在的象限,熟知关于原点对称的点的坐标特征是解答的关键.10、C【分析】利用两个点关于原点对称时,它们的坐标符号相反,即点关于原点的对称点是,进而求出即可.【详解】解:点与点关于原点对称,,,故.故选:C.【点睛】本题主要考查了关于原点对称点的坐标,解题的关键是正确掌握关于原点对称点的性质.二、填空题1、8【分析】根据题意可得,求出的值,代入计算即可.【详解】解:点在第二象限,且离轴的距离为3,,解得,.故答案为:8.【点睛】本题考查了平面直角坐标系-点到坐标轴的距离,绝对值的意义,跟具体题意求出的值是解本题的关键.2、四【分析】直接利用关于x,y轴对称点的性质得出a,b的值,进而得出答案.【详解】解:∵点A(a﹣1,5)与点B(﹣3,b)关于x轴对称,∴a﹣1=﹣3,b=﹣5,解得:a=﹣2,b=﹣5,∴点C(a,b)为C(﹣2,﹣5),∴点C(a,b)关于y轴对称的点的坐标为(2,﹣5),即点C(a,b)关于y轴对称的点在第四象限.故答案为:四.【点睛】本题考查了求关于坐标轴对称的点的坐标,判断点所在的象限,求得的值是解题的关键.3、-4【分析】在轴上点的坐标,横坐标为,可知,进而得到的值.【详解】解:在轴上故答案为:.【点睛】本题考察了坐标轴上点坐标的特征.解题的关键在于理解轴上点坐标的形式.在轴上点的坐标,横坐标为;在轴上点的坐标,纵坐标为.4、【分析】连接AD、BD,由勾股定理可得BD,求出∠OFA=30°,得到OA的值,进而求得OB的值,得到点D的坐标,由题意可得6次一个循环,即可求出经过第2022次旋转后,顶点的坐标.【详解】解:如图,连接AD,BD,在正六边形ABCDEF中,,∴,在中,,∴,∴,∴,∴,∵将正六边形ABCDEF绕坐标原点O顺时针旋转,每次旋转60°,∴6次一个循环,∵,∴经过第2022次旋转后,顶点D的坐标与第一象限中D点的坐标相同,故答案为:.【点睛】此题考查了正六边形的性质,平面直角坐标系中图形规律问题,解题的关键是正确分析出点D坐标的规律.5、 (3,-7)【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:在平面直角坐标系中,点P(-3,7)关于原点对称的点的坐标是(3,-7),故答案为:(3,-7).【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.三、解答题1、(1)见解析;(2)见解析;(3)【分析】(1)找到绕点O逆时针旋转90°的对应点,顺次连接,则即为所求;(2)找到关于点O的中心对称的对应点,顺次连接,则即为所求;(3)根据A(-4,3),B(-2,4),C(-1,1)经过旋转变换得到的,即横纵坐标的绝对值交换,且在第三象限,都取负号,即可求得,根据中心对称,横纵坐标都取相反数即可求得【详解】(1)如图所示,找到绕点O逆时针旋转90°的对应点,顺次连接,则即为所求;(2)如图所示,找到关于点O的中心对称的对应点,顺次连接,则即为所求;(3)【点睛】本题考查了求关于原点中心对称的点的坐标,绕原点旋转90度的点的坐标,画旋转图形,画中心对称图形,图形与坐标,掌握中心对称与旋转的性质是解题的关键.2、(1)画图见解析,A1(1,5)、B1(1,0)、C1(4,3);(2)见解析【分析】(1)根据关于y轴对称的点的坐标特征:纵坐标相同,横坐标互为相反数得到A、B、C对应点A1、B1、C1的坐标,然后描出A1、B1、C1,最后顺次连接A1、B1、C1即可;(2)如图所示,由图形可得,即可推出.【详解】解:(1)∵△A1B1C1是△ABC关于y轴的对称图形,A(﹣1,5),B(﹣1,0),C(﹣4,3).∴点A1(1,5)、B1(1,0)、C1(4,3),如图所示,△A1B1C1即为所求;(2)如图所示,由图形得:,∴EF是BC的两个三等分点,∴,∴线段AE,AF即为所求.【点睛】本题主要考查了坐标与图形变化—轴对称,画轴对称图形,三角形面积问题,解题的关键在于能够熟练掌握关于y轴对称的点的坐标特征.3、图见解析,面积为2【分析】先求出旋转后A1(5,2),B1(2,3),C1(4,1),然后描点,连线,利用矩形面积减三个三角形面积即可.【详解】解:∵的顶点坐标分别为,绕点顺时针旋转,得到,∴点A1横坐标-1+[5-(-1)]=5,纵坐标-1+[-1-(-4)]=2,A1(5,2),∴点B1横坐标-1+[2-(-1)]=2,纵坐标-1+[-1-(-5)]=3,B1(2,3),∴点C1横坐标-1+[4-(-1)]=4,纵坐标-1+[-1-(-3)]=1,C1(4,1),在平面直角坐标系中描点A1(5,2),B1(2,3),C1(4,1),顺次连结A1B1, B1C1,C1A1,则△A1B1C1为所求;,=,=,=2.【点睛】本题考查三角形旋转画图,割补法求三角形面积,掌握求旋转坐标的方法,描点法画图,割补法求面积是解题关键.4、(1)见解析;(2)见解析;(3)(-3,-2),(3,-1)【分析】(1)先根据网格找到A、B、C的对应点A1、B1、C1,然后顺次连接A1、B1、C1即可;(2)先根据网格找到A、B、C的对应点A2、B2、C2,然后顺次连接A2、B2、C2即可;(3)根据(1)(2)说画图形求解即可.【详解】解:(1)如图所示,即为所求;(2)如图所示,即为所求;(3)由图可知,的坐标为(-3,-2),的坐标为(3,-1),故答案为:(-3,-2);(3,-1).【点睛】本题主要考查了坐标与图形变化—旋转变化,轴对称变化,画旋转图形和轴对称图形,解题的关键在于能够熟练掌握相关知识进行求解.5、(1)见解析;(2)见解析;(3)见解析,7【分析】(1)依据平移的方向和距离,即可得到;(2)依据轴对称的性质,即可得到;(3)依据割补法进行计算,即可得到△A1A2C2的面积.【详解】(1)如图所示,即为所求;(2)如图所示,即为所求;(3)如图所示,△A1A2C2即为所求作的三角形,△A1A2C2的面积=3×6-×2×3-×2×6-×1×4=18-3-6-2=7.【点睛】本题考查作图−平移变换,轴对称变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.6、(1)见详解;(2)(1,2);(3)(-a,-b).【分析】(1)分别作出A、B二点关于y轴的对称点A1、B1,再分别作出A1、B1二点关于x轴的对称点A2、B2即可;(2)根据图示得出坐标即可;(3)根据轴对称的性质得出坐标即可.【详解】解:(1)如图所示:线段A1B1和线段A2B2即为所求;(2) 点A2的坐标为(1,2);(3)点M(a,b),关于y轴对称的对称点M1(-a,b),点M1关于x轴对称的对称点M2(-a,-b),故点M2的坐标为(-a,-b).【点睛】本题考查作图-轴对称变换,轴对称-最短问题,两点之间线段最短等知识,解题的关键是熟练掌握轴对称的概念,利用对称解决最短问题,属于中考常考题型.7、(1)作图见解析,点D的坐标为(2,-4);(2)作图见解析,点E的坐标为(3,3);(3)①作图见解析,点M的坐标为(1,-5);②MN∥CD.【分析】(1)根据点A平移到点C,即可得到平移的方向和距离,进而画出平移后所得的线段CD;(2)根据线段AB绕点A逆时针旋转90°,即可画出旋转后所得的线段AE;(3)①分别作出A,B的对应点M,N,连接即可;②由平行线的传递性可得答案.【详解】解:(1)如图所示,线段CD即为所求,点D的坐标为(2,-4);(2)如图所示,线段AE即为所求,点E的坐标为(3,3);(3)①如图所示,线段MN即为所求,点M的坐标为(1,-5);②∵线段MN与线段AB关于原点成中心对称,∴MN∥AB,∵线段CD是由线段AB平移得到的,∴CD∥AB,∴MN∥CD.【点睛】本题主要考查了利用平移变换和旋转变换作图,解题的关键是理解题意,灵活运用所学知识解决问题.8、(1)图形见解析;(2)5【分析】(1)根据关于原点对称的点的坐标特征,依次求出的坐标即可;(2)利用割补法求△A1B1C1面积.【详解】(1)∵∴△ABC关于原点O对称的△A1B1C1位置如图:(2)【点睛】此题考查了中心对称的知识,解答本题的关键是根据关于原点对称的点的坐标特征得到各点的对应点.9、(1)见解析;(2)(﹣1,﹣4),(﹣4,1);(3)9.5【分析】(1)先找出点A、B、C关于x轴的对称点,然后依次连接即可得; (2)根据△DEF的位置,即可得出D,E两点的坐标;(3)依据割补法进行计算,使用长方形面积减去三个三角形面积即可得到△DEF的面积.【详解】解:(1)如图所示,△DEF即为所求;(2)由图可得,D(﹣1,﹣4),E(﹣4,1);故答案为:(﹣1,﹣4),(﹣4,1);(3),∴面积为9.5.【点睛】题目主要考查作轴对称图形,点在坐标系中的位置及利用割补法求三角形面积,熟练掌握轴对称图形的作法是解题关键.10、(1)图见解析,(-1,-3),(-2,0);(2)9【分析】(1)根据题意直接利用关于坐标轴对称点的性质得出各对应点位置即可;(2)由题意利用△ABC所在矩形面积减去周围三角形面积进行计算进而得出答案.【详解】解:(1)如图,△A1B1C1即为所作,点A关于x轴对称的点坐标为 (-1,-3);点B关于y轴对称的点坐标为:(-2,0);故答案为:(-1,-3),(-2,0);(2)△ABC的面积是:4×5-×2×4-×3×3-×1×5=9.故答案为:9.【点睛】本题主要考查轴对称变换以及求三角形面积-补全法,根据题意得出对应点位置是解题的关键.
相关试卷
这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试随堂练习题,共25页。试卷主要包含了在平面直角坐标系中,点P等内容,欢迎下载使用。
这是一份2021学年第十五章 平面直角坐标系综合与测试当堂检测题,共27页。试卷主要包含了点在,已知点A,如果点P,若平面直角坐标系中的两点A,已知点M等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习题,共25页。试卷主要包含了在平面直角坐标系中,点P,点关于轴对称的点的坐标是,点P关于原点对称的点的坐标是等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)