开学活动
搜索
    上传资料 赚现金

    2022年最新精品解析沪教版七年级数学第二学期第十五章平面直角坐标系同步练习练习题

    2022年最新精品解析沪教版七年级数学第二学期第十五章平面直角坐标系同步练习练习题第1页
    2022年最新精品解析沪教版七年级数学第二学期第十五章平面直角坐标系同步练习练习题第2页
    2022年最新精品解析沪教版七年级数学第二学期第十五章平面直角坐标系同步练习练习题第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试当堂达标检测题

    展开

    这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试当堂达标检测题,共29页。试卷主要包含了已知点M,在平面直角坐标系中,点A,点关于轴对称的点的坐标是等内容,欢迎下载使用。
    七年级数学第二学期第十五章平面直角坐标系同步练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、在平面直角坐标系中,点(2,﹣5)关于x轴对称的点的坐标是(  )
    A.(2,5) B.(﹣2,5) C.(﹣2,﹣5) D.(2,﹣5)
    2、如图,直角坐标平面xOy内,动点P按图中箭头所示方向依次运动,第1次从点(﹣1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,﹣2),…按这样的运动规律,动点P第2021次运动到点( )

    A.(2020,﹣2) B.(2020,1) C.(2021,1) D.(2021,﹣2)
    3、如图,在平面直角坐标系中,长方形的顶点的坐标分别为,点是的中点,点在上运动,当时,点的坐标是( )

    A. B. C. D.
    4、已知点M(m,﹣1)与点N(3,n)关于原点对称,则m+n的值为(  )
    A.3 B.2 C.﹣2 D.﹣3
    5、点向上平移2个单位后与点关于y轴对称,则( ).
    A.1 B. C. D.
    6、在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则( )
    A.m=3,n=2 B.m=,n=2 C.m=2,n=3 D.m=,n=
    7、点关于轴对称的点的坐标是( )
    A. B. C. D.
    8、若在第一象限的ABC关于某条直线对称后的DEF在第四象限,则这条直线可以是(  )
    A.直线x=﹣1 B.x轴 C.y轴 D.直线x=
    9、在平面直角坐标系中,若点与点关于原点对称,则点在( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    10、如图为某停车场的平面示意图,若“奥迪”的坐标是(-2,-1),“奔驰”的坐标是(1,-1),则“东风标致”的坐标是( )

    A.(-3,2) B.(3,2) C.(-3,-2) D.(3,-2)
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、点在直角坐标系的轴上,等于 ____.
    2、若点P(-5,a)与Q(b,)关于x轴对称,则代数式的值为___.
    3、若点与点关于原点对称,则_________.
    4、已知在平面直角坐标系中,点在第一象限,且点到轴的距离为2,到轴的距离为5,则的值为______.
    5、点P(1,2)关于原点中心对称的点的坐标为_______.
    三、解答题(10小题,每小题5分,共计50分)
    1、如图,在平面直角坐标系中有一个△ABC,顶点A(-1,3),B(2,0),C(-3,-1).
    (1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);点A关于x轴对称的点坐标为_______;点B关于y轴对称的点坐标为_______;
    (2)若网格上的每个小正方形的边长为1,则△ABC的面积是_______.

    2、如图,平面直角坐标系中ABC的三个顶点分别是A(-4,3),B(-2,4),C(-1,1).

    (1)将ABC绕点O逆时针旋转90°,画出旋转后的A1B1C1;
    (2)作出ABC关于点O的中心对称图形A2B2C2;
    (3)如果ABC内有一点P(a,b),请直接写出变换后的图形中对应点P1、P2的坐标.
    3、已知A(-1,3),B(4,2),C(2,-1).
    (1)在平面直角坐标系中,画出△ABC及△ABC关于y轴的对称图形△A1B1C1;
    (2)P为x轴上一点,请在图中标出使△PAB的周长最小时的点P,并根据图象直接写出此时点P的坐标 .

    4、在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,的顶点的坐标分别是,,.
    (1)求的面积;
    (2)在图中作出关于轴的对称图形;
    (3)写出点,的坐标.

    5、如图,在正方形网格中,每个小正方形的边长均为1,ABC的三个顶点都在格点上,结合所给的平面直角坐标系,解答下列问题:
    (1)请画出ABC关于x轴成轴对称的A1B1C1,并写出点A1的坐标;
    (2)请画出ABC关于点O成中心对称的A2B2C2,并写出点A2的坐标;
    (3)A1B1C1与A2B2C2关于某直线成轴对称吗?若是,请写出对称轴;若不是,请说明理由.

    6、在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.
    (1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1 ,3),点B坐标为(2 ,1);
    (2)请画出△ABC关于y轴对称的图形△A1B1C1,并写出点B1的坐标为    ;
    (3)P为y轴上一点,当PB+PC的值最小时,P点的坐标为 .

    7、如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.
    实验与探究:(1)观察图,易知A(0,2)关于直线l的对称点的坐标为(2,0),请在图中分别标明B(5,3)、C(﹣2,5)关于直线l的对称点、的位置,并写出他们的坐标: , ;
    归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点的坐标为 (不必证明);
    运用与拓广:(3)已知两点D(1,﹣3)、E(﹣3,﹣4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小.

    8、在平面直角坐标系xOy中,对于任意图形G及直线l1,l2,给出如下定义:将图形G先沿直线l1翻折得到图形G1,再将图形G1沿直线l2翻折得到图形G2,则称图形G2是图形G的伴随图形.
    例如:点P(2,1)的伴随图形是点P'(-2,-1).
    (1)点Q(-3,-2)的伴随图形点Q'的坐标为 ;
    (2)已知A(t,1),B(t-3,1),C(t,3),直线m经过点(1,1).
    ①当t=-1,且直线m与y轴平行时,点A的伴随图形点A'的坐标为 ;
    ②当直线m经过原点时,若△ABC的伴随图形上只存在两个与x轴的距离为1的点,直接写出t的取值范围.
    9、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(0, -1),

    (1)写出A、B两点的坐标;
    (2)画出△ABC关于y轴对称的△A1B1C1 ;
    (3)画出△ABC绕点C旋转180°后得到的△A2B2C2.
    10、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立如图所示的平面直角坐标系后,的顶点均在格点上,且坐标分别为:A(3,3)、B(-1,1)、C(4,1).依据所给信息,解决下列问题:
    (1)请你画出将向右平移3个单位后得到对应的;
    (2)再请你画出将沿x轴翻折后得到的;
    (3)若连接、,请你直接写出四边形的面积.


    -参考答案-
    一、单选题
    1、A
    【分析】
    根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),据此即可求得点A(2,﹣5)关于x轴对称的点的坐标.
    【详解】
    解:∵点(2,﹣5)关于x轴对称,
    ∴对称的点的坐标是(2,5).
    故选:A.
    【点睛】
    本题主要考查了关于x轴对称点的性质,点P(x,y)关于x轴的对称点P′的坐标是(x,-y).
    2、B
    【分析】
    观察图形可知,每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,然后根据商和余数的情况确定运动后点的坐标即可.
    【详解】
    解:点的运动规律是每运动四次向右平移四个单位,

    动点第2021次运动时向右个单位,
    点此时坐标为,
    故选:B.
    【点睛】
    本题主要考查平面直角坐标系下的规律探究题,解答时注意探究动点的运动规律,又要注意动点的坐标的象限符号.
    3、A
    【分析】
    由点是的中点,可得出点D的坐标,当,由等腰三角形的性质即可得出点P的坐标
    【详解】
    解:过点P作PM⊥OD于点M,

    ∵长方形的顶点的坐标分别为,点是的中点,
    ∴点D(5,0)
    ∵,PM⊥OD,
    ∴OM=DM
    即点M(2.5,0)
    ∴点P(2.5,4),
    故选:A
    【点睛】
    此题主要考查了坐标与图形的性质和等腰三角形的性质,熟练掌握等腰三角形“三线合一”的性质是解题的关键.
    4、C
    【分析】
    利用两个点关于原点对称时,它们的坐标符号相反,即点关于原点的对称点是,进而求出即可.
    【详解】
    解:点与点关于原点对称,
    ,,
    故.
    故选:C.
    【点睛】
    本题主要考查了关于原点对称点的坐标,解题的关键是正确掌握关于原点对称点的性质.
    5、D
    【分析】
    利用平移及关于y轴对称点的性质即可求解.
    【详解】
    解:把向上平移2个单位后得到点 ,
    ∵点与点关于y轴对称,
    ∴ , ,
    ∴ ,
    ∴,
    故选:D.
    【点睛】
    本题考查坐标与图形变化平移、轴对称的性质及负整数指数幂,解题关键是掌握平移、轴对称的性质及负整数指数幂.
    6、B
    【分析】
    由题意直接根据关于y轴对称点的性质求出m和n的值,从而得解.
    【详解】
    解:∵点A(m,2)与点B(3,n)关于y轴对称,纵坐标相同,横坐标互为相反数.
    ∴m=-3,n=2.
    故答案为:B.
    【点睛】
    本题主要考查关于y轴对称点的性质,正确掌握横纵坐标的符号关系是解题的关键.
    7、B
    【分析】
    根据两个关于x轴成轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,即可得答案.
    【详解】
    解:∵点A的坐标为(-2,-3),
    ∴点A(-2,-3)关于x轴对称的点的坐标是(-2,3).
    故选:B.
    【点睛】
    本题是对坐标系中对称点的考查,熟记两个关于x轴成轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,是解题关键.
    8、B
    【分析】
    根据轴对称的性质判断即可.
    【详解】
    解:若在第一象限的ABC关于某条直线对称后的DEF在第四象限,则这条直线可以是x轴
    故选:B.
    【点睛】
    本题考察了轴对称的性质,利用轴对称的性质找出对称轴是本题的关键.
    9、B
    【分析】
    根据点(x,y)关于原点对称的点的坐标为(﹣x,﹣y)可求得m、n值,再根据象限内点的坐标的符号特征即可解答.
    【详解】
    解:∵点与关于原点对称,
    ∴m=-2,m-n=﹣3,
    ∴n=1,
    ∴点M(-2,1)在第二象限,
    故选:B.
    【点睛】
    本题考查平面直角坐标系中关于原点对称的点的坐标、点所在的象限,熟知关于原点对称的点的坐标特征是解答的关键.
    10、D
    【分析】
    由题意,先建立平面直角坐标系,确定原点的位置,即可得到“东风标致”的坐标.
    【详解】
    解:∵“奥迪”的坐标是(2,1),“奔驰”的坐标是(1,1),
    ∴建立平面直角坐标系,如图所示:

    ∴“东风标致”的坐标是(3,2);
    故选:D.
    【点睛】
    本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.
    二、填空题
    1、-1
    【分析】
    让纵坐标为0得到m的值,计算可得点P的坐标.
    【详解】
    解:∵点P(3,m+1)在直角坐标系x轴上,
    ∴m+1=0,
    解得m=-1,
    故选:-1.
    【点睛】
    考查点的坐标的确定;用到的知识点为:x轴上点的纵坐标为0.
    2、##
    【分析】
    先利用横坐标互为相反数,纵坐标不变求解 再逆用积的乘方公式即可得到答案.
    【详解】
    解: 点P(-5,a)与Q(b,)关于x轴对称,


    故答案为:
    【点睛】
    本题考查的是关于轴对称的点的坐标特点,积的乘方的逆运算,掌握“公式 与关于轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数”是解本题的关键.
    3、
    【分析】
    利用原点对称的点的坐标特征可知:M点和N点的横坐标之和与纵坐标之和都为0,得到关于、的二元一次方程组,解方程求出、的值,进而求出.
    【详解】
    和点关于原点对称,
    解得:

    故答案为:.
    【点睛】
    本题主要是考察了关于原点对称的点的特征,熟练掌握关于原点对称的点的横坐标之和与纵坐标之和都为0,是解决此类题的关键.
    4、7
    【分析】
    由题意得,,,即可得.
    【详解】
    解:由题意得,,,
    则,
    故答案为:7.
    【点睛】
    本题考查了点的坐标特征,解题的关键是理解题意.
    5、(-1,-2)
    【分析】
    平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y).据此作答.
    【详解】
    解:根据中心对称的性质,得点P(1,2)关于原点中心对称的点的坐标为(-1,-2).
    故答案为:(-1,-2).
    【点睛】
    本题主要考查了关于原点对称的点的坐标特征,熟知关于原点对称的点的坐标特征是解题的关键.
    三、解答题
    1、(1)图见解析,(-1,-3),(-2,0);(2)9
    【分析】
    (1)根据题意直接利用关于坐标轴对称点的性质得出各对应点位置即可;
    (2)由题意利用△ABC所在矩形面积减去周围三角形面积进行计算进而得出答案.
    【详解】
    解:(1)如图,△A1B1C1即为所作,

    点A关于x轴对称的点坐标为 (-1,-3);
    点B关于y轴对称的点坐标为:(-2,0);
    故答案为:(-1,-3),(-2,0);
    (2)△ABC的面积是:4×5-×2×4-×3×3-×1×5=9.
    故答案为:9.
    【点睛】
    本题主要考查轴对称变换以及求三角形面积-补全法,根据题意得出对应点位置是解题的关键.
    2、(1)见解析;(2)见解析;(3)
    【分析】
    (1)找到绕点O逆时针旋转90°的对应点,顺次连接,则即为所求;
    (2)找到关于点O的中心对称的对应点,顺次连接,则即为所求;
    (3)根据A(-4,3),B(-2,4),C(-1,1)经过旋转变换得到的,即横纵坐标的绝对值交换,且在第三象限,都取负号,即可求得,根据中心对称,横纵坐标都取相反数即可求得
    【详解】
    (1)如图所示,找到绕点O逆时针旋转90°的对应点,顺次连接,则即为所求;
    (2)如图所示,找到关于点O的中心对称的对应点,顺次连接,则即为所求;

    (3)
    【点睛】
    本题考查了求关于原点中心对称的点的坐标,绕原点旋转90度的点的坐标,画旋转图形,画中心对称图形,图形与坐标,掌握中心对称与旋转的性质是解题的关键.
    3、(1)见解析;(2)见解析,
    【分析】
    (1)根据关于y轴对称点的坐标特点得到△A1B1C1各顶点的坐标,然后描出各点,然后顺次连接即可;
    (2)作点A关于x轴的对称点A1,连接A1B交x轴与点P.
    【详解】
    解:(1)如图△ABC及△A1B1C1即为所求作的图形;

    (2)如图点P即为所求作的点,此时点P的坐标(2,0) .
    【点睛】
    本题主要考查的是轴对称变换,掌握关于轴对称点的坐标特点是解题的关键.
    4、(1);(2)见解析;(3)A1(1,5),C1(4,3)
    【分析】
    (1)根据三角形面积公式进行计算即可得;
    (2)可以由三个顶点的位置确定,只要能分别画出这三个顶点关于y轴的对称点,连接这些对称点即可得;
    (3)根据(2)即可写出.
    【详解】
    解:(1)
    (2)如下图所示:

    (3)A1(1,5);C1(4,3)
    【点睛】
    本题考查了画轴对称图形,解题的关键是掌握画轴对称图形的方法.
    5、(1)画图见解析,点A1的坐标;(-4,3);(2)画图见解析,点A2的坐标(4,3);(3)△A1B1C1与△A2B2C2关于y轴成轴对称,对称轴为y轴.
    【分析】
    (1)分别作出A,B,C的对应点A1,B1,C1即可;
    (2)分别作出A,B,C的对应点A2,B2,C2即可;
    (3)根据轴对称的定义判断即可.
    【详解】
    解:(1)如图,△A1B1C1即为所求,点A的对应点A1的坐标;(-4,3);
    (2)如图,△A2B2C2即为所求,点A2的坐标(4,3);

    (3)△A1B1C1与△A2B2C2关于y轴成轴对称,对称轴为y轴.
    【点睛】
    本题考查作图-旋转变换,轴对称变换,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.注意:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
    6、(1)见详解;(2)△A1B1C1即为所求,见详解,(-2,1);(3)(0,3).
    【分析】
    (1)根据点A及点B的坐标,易得y轴在A的左边一个单位,x轴在A的下方3个单位,建立直角坐标系即可;
    (2)根据平面直角坐标系求出点C坐标,根据ABC关于y轴对称的图形为△A1B1C1,求出A1(-1,3),B1(-2,1),C1(-4,7),描点A1(-1,3),B1(-2,1),C1(-4,7),再顺次连接即可画出ABC关于y轴对称的图形为△A1B1C1;
    (3)过C1作y轴平行线与过B作x轴平行线交于G,BG交y轴于H,直接利用轴对称求最短路线的方法,根据点C的对称点为C1,连接BC1与y轴相交,此交点即为点P即可得出PB+PC的值最小,先证△GBC1为等腰直角三角形,再证△PHB为等腰直角三角形,最后求出y轴交点坐标即可.
    【详解】
    解:(1)点A坐标为(1 ,3),点B坐标为(2 ,1)
    点A向左平移1个单位为y轴,再向下平移3个单位为x轴,建立如图平面直角坐标系,
    如图所示:即为作出的平面直角坐标系;

    (2)根据图形得出出点C(4,7)
    ∵△ABC关于y轴对称的图形△A1B1C1,关于y轴对称的点的特征是横坐标互为相反数,纵坐标不变,
    ∵A(1,3),B (2,1),C(4,7),
    ∴A1(-1,3),B1(-2,1),C1(-4,7),
    在平面直角坐标系中描点A1(-1,3),B1(-2,1),C1(-4,7),
    顺次连接A1B1, B1C1, C1 A1,
    如图所示:△A1B1C1即为所求,
    故答案为:(-2,1);
    (3)如图所示:点P即为所求作的点.过C1作y轴平行线与过B作x轴平行线交于G,BG交y轴于H,
    ∵点C的对称点为C1,
    ∴连接BC1与y轴相交于一点即为点P,此时PB+PC的值最小,
    ∵B(2,1),C1(-4,7),
    ∴C1G=7-1=6,BG=2-(-4)=6,
    ∴C1G=BG,
    ∴△GBC1为等腰直角三角形,
    ∴∠GBC1=45°,
    ∵∠OHB=90°,
    ∴△PHB为等腰直角三角形,
    ∴yP-1=2-0,
    解得yP=3,
    ∴点P(0,3).
    故答案为(0,3).

    【点睛】
    本题考查了建立平面直角坐标系,画轴对称图形,等腰直角三角形判定与性质,最短路径,掌握轴对称的性质及轴对称与坐标的变化规律并利用其准确作图,待定系数法求解析式是解答本题的关键.
    7、(1)(3,5),(5,﹣2);(2)(b,a);(3)Q(-3,-3)
    【分析】
    (1)根据点关于直线对称的定义,作出B、C两点关于直线l的对称点B′、C′,写出坐标即可.
    (2)通过观察即可得出对称结论.
    (3)作点E关于直线l的对称点E′(﹣4,﹣3),连接DE′交直线l于Q,此时QE+QD的值最小.
    【详解】
    解:(1)B(5,3)、C(﹣2,5)关于直线l的对称点B′、C′的位置如图所示.

    B′(3,5),C′(5,﹣2).
    故答案为B′(3,5),C′(5,﹣2).
    (2)由(1)可知点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为P′(b,a).
    (3)作点E关于直线l的对称点E′(﹣4,﹣3),连接DE′交直线l于Q,
    ∵两点之间线段最短
    ∴此时QE+QD的值最小,
    由图象可知Q点坐标为(-3,-3).
    【点睛】
    本题考查了坐标系中的轴对称变化,点关于第一、三象限角平分线对称的点的坐标为;关于第二、四象限角平分线对称的点的坐标为.
    8、
    (1)(3,2)
    (2)①(3,-1);②-1<t<1或2<t<4
    【分析】
    (1)点先关于轴对称的点坐标为,再关于轴对称的点坐标为,故可得点的伴随图形点坐标;
    (2)①时,点坐标为,直线为,此时点先关于轴对称的点坐标为,再关于轴对称的点坐标为,进而得到点的伴随图形点坐标;②由题意知直线为直线,、、三点的轴,的伴随图形点坐标依次表示为:,,,由题意可得,或解出的取值范围即可.
    (1)
    解:由题意知沿轴翻折得点坐标为;
    沿轴翻折得点坐标为
    故答案为:.
    (2)
    ①解:.,点坐标为,直线为,
    沿轴翻折得点坐标为
    沿直线翻折得点坐标为即为
    故答案为:
    ②解:∵直线经过原点
    ∴直线为
    ∴、、的伴随图形点坐标先沿轴翻折,点坐标依次为,,;
    然后沿直线翻折,点坐标依次表示为:,,
    由题意可知:或
    解得:或
    【点睛】
    本题考查了直角坐标系中的点对称,几何图形翻折.解题的关键在于正确的将翻折后的点坐标表示出来.
    9、(1)A(-1,2) B(-3,1); (2)见解析;(3)见解析
    【分析】
    (1)根据 A,B 的位置写出坐标即可;
    (2)分别求出 A,B,C 的对应点 A1,B1,C1的坐标,然后描点A1(1,2),B1(3,1),C1(0,-1),顺次连结A1B1, B1C1,C1A1即可;
    (3)分别求出 A,B,C 的对应点A2(1,-4)、B2(3,-3)、C2(0,-1),然后描点,顺次连结A2B2, B2C2,C2A2即可.
    【详解】
    (1)由题意 A(-1,2),B(-3,1).
    (2)△ABC关于y轴对称的△A1B1C1,对应点的坐标纵坐标不变,横坐标互为相反数,
    ∵A(-1,2),B(-3,1).C(0,-1),
    ∴A1(1,2),B1(3,1),C1(0,-1),
    在平面直角坐标系中描点A1(1,2),B1(3,1),C1(0,-1),顺次连结A1B1, B1C1,C1A1,
    如图△A1B1C1即为所求.
    (3)△ABC绕点C旋转180°后得到的△A2B2C2,关于点C成中心对称,对应点的横坐标为互为相反数,
    ∵A(-1,2),B(-3,1).C(0,-1),
    ∴A2、B2、C2的横坐标分别为1,3,0,
    纵坐标分别为-1-(2+1)=-4,-1-(1+1)=-3,-1,
    ∴A2(1,-4)、B2(3,-3)、C2(0,-1),
    在平面直角坐标系中描点A2(1,-4)、B2(3,-3)、C2(0,-1),顺次连结A2B2, B2C2,C2A2,
    如图△A2B2C2即为所求.

    【点睛】
    本题主要考查图形与坐标,作图-轴对称变换,旋转变换等知识,解答本题的关键是熟练掌握基本知识,属于中考常考题型.
    10、(1)见解析;(2)见解析;(3)16
    【分析】
    (1)利用平移的性质得出对应点位置进而得出答案;
    (2)利用关于x轴对称的点的坐标找出A2、B2、C2的坐标,然后描点即可;
    (3)运用割补法求解即可
    【详解】
    解:(1)如图,即为所作;

    (2)如图,即为所作;
    (3)四边形的面积==16
    【点睛】
    此题主要考查了轴对称变换以及平移变换和四边形面积求法,根据题意得出对应点位置是解题关键.

    相关试卷

    沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后作业题:

    这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后作业题,共28页。试卷主要包含了点M,若点P,在平面直角坐标系中,点在等内容,欢迎下载使用。

    初中第十五章 平面直角坐标系综合与测试当堂达标检测题:

    这是一份初中第十五章 平面直角坐标系综合与测试当堂达标检测题,共27页。试卷主要包含了已知点A,在平面直角坐标系中,点P,在平面直角坐标系中,点在,已知点M,点A关于y轴的对称点A1坐标是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步达标检测题:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步达标检测题,共29页。试卷主要包含了如图,A,已知点A,在平面直角坐标系中,点在等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map