![2022年最新精品解析沪教版七年级数学第二学期第十五章平面直角坐标系综合测试试卷(精选)第1页](http://img-preview.51jiaoxi.com/2/3/12712379/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析沪教版七年级数学第二学期第十五章平面直角坐标系综合测试试卷(精选)第2页](http://img-preview.51jiaoxi.com/2/3/12712379/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析沪教版七年级数学第二学期第十五章平面直角坐标系综合测试试卷(精选)第3页](http://img-preview.51jiaoxi.com/2/3/12712379/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试习题
展开
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试习题,共30页。试卷主要包含了点P在第二象限内,P点到x,下列各点,在第一象限的是,点在,若点在第三象限,则点在.等内容,欢迎下载使用。
七年级数学第二学期第十五章平面直角坐标系综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知点M(m,﹣1)与点N(3,n)关于原点对称,则m+n的值为( )A.3 B.2 C.﹣2 D.﹣32、在平面直角坐标系中,点关于轴的对称点的坐标是( )A. B. C. D.3、在平面直角坐标系中,点在( )A.轴正半轴上 B.轴负半轴上C.轴正半轴上 D.轴负半轴上4、点P在第二象限内,P点到x、y轴的距离分别是4、3,则点P的坐标为( )A.(-4,3) B.(-3,-4) C.(-3,4) D.(3,-4)5、下列各点,在第一象限的是( )A. B. C.(2,1) D.6、点在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限7、若点在第三象限,则点在( ).A.第一象限 B.第二象限 C.第三象限 D.第四象限8、点(a,﹣3)关于原点的对称点是(2,﹣b),则a+b=( )A.5 B.﹣5 C.1 D.﹣19、在平面直角坐标系中,点A的坐标为(﹣4,3),若AB∥x轴,且AB=5,当点B在第二象限时,点B的坐标是( )A.(﹣9,3) B.(﹣1,3) C.(1,﹣3) D.(1,3)10、点向上平移2个单位后与点关于y轴对称,则( ).A.1 B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知点与关于原点对称,则xy的值是______.2、在平面直角坐标系中,对进行循环往复的轴对称变换,若原来点的坐标是,则经过第2021次变换后所得的点的坐标是___________.3、如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2022次得到正方形OA2022B2022C2022,如果点A的坐标为(1,0),那么点B2022的坐标为 ___.4、已知点在第二象限,且离轴的距离为3,则____.5、在平面直角坐标系中,与点(2,-7)关于y轴对称的点的坐标为____.三、解答题(10小题,每小题5分,共计50分)1、在如图所示的正方形网格中建立平面直角坐标系,的顶点坐标分别为,,,请按要求解答下列问题:(1)画出关于x轴对称的,并写出点A的对应点的坐标为( , );(2)平行于y轴的直线l经过,画出关于直线l对称的图形,并直接写出( , ),( , ),( , );(3)仅用无刻度直尺作出的角平分线BD,保留画图痕迹(不写画法).2、已知点,解答下列各题.(1)点P在x轴上,求出点P的坐标;(2)点Q的坐标为=,直线轴;求出点P的坐标;(3)若点P在第二象限,且它到x轴、y轴的距离相等,求的值.3、如图,已知的三个顶点分别为,,.(1)请在坐标系中画出关于轴对称的图形(,,的对应点分别是,,),并直接写出点,,的坐标;(2)求四边形的面积.4、在平面直角坐标系中,的顶点坐标分别为.(1)关于y轴的对称图形为画出,(点A与点对应,点B与点对应,点C与点对应);(2)连接,在的下方画出以为底的等腰直角,并直接写出点P的坐标.5、如图,平面直角坐标系中,的顶点都在格点上,已知点的坐标是.(1)点的坐标是______;(2)画出关于轴对称的,其中点、、的对应点分别为点、、;(3)直接写出的面积为______.6、如图,在平面直角坐标系中,线段AB的两个端点的坐标分别为A(﹣1,﹣2),B(﹣2,﹣4).(1)画出线段AB关于y轴对称的线段A1B1,再画出线段A1B1关于x轴对称的线段A2B2;(2)点A2的坐标为 ;(3)若此平面直角坐标系中有一点M(a,b),点M关于y轴对称的对称点M1,点M1关于x轴对称的对称点M2,则点M2的坐标为 .7、在平面直角坐标系xOy中,对于任意图形G及直线l1,l2,给出如下定义:将图形G先沿直线l1翻折得到图形G1,再将图形G1沿直线l2翻折得到图形G2,则称图形G2是图形G的<l1,l2>伴随图形.例如:点P(2,1)的<x轴,y轴>伴随图形是点P'(-2,-1).(1)点Q(-3,-2)的<x轴,y轴>伴随图形点Q'的坐标为 ;(2)已知A(t,1),B(t-3,1),C(t,3),直线m经过点(1,1).①当t=-1,且直线m与y轴平行时,点A的<x轴,m>伴随图形点A'的坐标为 ;②当直线m经过原点时,若△ABC的<x轴,m>伴随图形上只存在两个与x轴的距离为1的点,直接写出t的取值范围.8、如图,等腰直角△ABC中,BC=AC,∠ACB=90°,现将该三角形放置在平面直角坐标系中:(1)点B坐标为(0,2),点C坐标为(6,0),求点A的坐标;(2)点B坐标为(0,m),点C坐标为(n,0),连接OA,若P为坐标平面内异于点A的点,且以O、P、C为顶点的三角形与△OAC全等,请直接写出满足条件的点P的坐标(用含m,n的式子表示).9、如图所示,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)在图中画出△ABC关于y轴的对称图形△A1B1C1,写出A1、B1、C1的坐标;(2)画出两条线段,将△ABC分成面积相等的三部分,要求所画线段的端点在格点上.10、如图,在平面直角坐标中,、、.(1)在图中作出关于轴的对称图形;(2)直接写出点、、的坐标:________,________,________.(3)求的面积. -参考答案-一、单选题1、C【分析】利用两个点关于原点对称时,它们的坐标符号相反,即点关于原点的对称点是,进而求出即可.【详解】解:点与点关于原点对称,,,故.故选:C.【点睛】本题主要考查了关于原点对称点的坐标,解题的关键是正确掌握关于原点对称点的性质.2、B【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点P(2,-1)关于x轴的对称点的坐标为(2,1),故选:B.【点睛】此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标的变化规律.3、B【分析】依据坐标轴上的点的坐标特征即可求解.【详解】解:∵点(,),纵坐标为∴点(,)在x轴负半轴上故选:B【点睛】本题考查了点的坐标:坐标平面内的点与有序实数对是一一对应的关系;解题时注意:x轴上点的纵坐标为,y轴上点的横坐标为.4、C【分析】点P到x、y轴的距离分别是4、3,表明点P的纵坐标、横坐标的绝对值分别为4与3,再由点P在第二象限即可确定点P的坐标.【详解】∵P点到x、y轴的距离分别是4、3,∴点P的纵坐标绝对值为4、横坐标的绝对值为3,∵点P在第二象限内,∴点P的坐标为(-3,4),故选:C.【点睛】本题考查了平面直角坐标系中点所在象限的特点,点到的坐标轴的距离,确定点的坐标,掌握这些知识是关键.要注意:点到x、y轴的距离是此点的纵坐标、横坐标的绝对值,而非横坐标、纵坐标的绝对值.5、C【分析】由题意根据各象限内点的坐标特征逐项进行分析判断即可.【详解】解:、在第四象限,故本选项不合题意;、在第二象限,故本选项不合题意;、在第一象限,故本选项符合题意;、在第三象限,故本选项不合题意;故选:C.【点睛】本题考查各象限内点的坐标的符号特征,熟练掌握各象限内点的坐标的符号是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6、C【分析】根据各象限内点的坐标特征解答.【详解】解:点的横坐标小于0,纵坐标小于0,点所在的象限是第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).7、A【分析】根据第三象限点的横坐标与纵坐标都是负数,然后判断点Q所在的象限即可.【详解】∵点P(m,n)在第三象限,∴m<0,n<0,∴-m>0,-n>0,∴点在第一象限.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8、B【分析】根据关于原点对称的点的坐标特证构造方程-b=3,a=−2,再解方程即可得到a、b的值,进而可算出答案.【详解】解:∵点(a,﹣3)关于原点的对称点是(2,﹣b),∴−b=3,a=−2,解得:b=-3,a=−2,则,故选择B.【点睛】本题主要考查了关于原点对称的点的坐标:掌握关于原点对称的特征,两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(−x,−y).关键是利用对称性质构造方程.9、A【分析】根据平行及线段长度、点B在第二象限,可判断点B一定在点A的左侧,且两个点纵坐标相同,再由线段长即可确定点B的坐标.【详解】解:∵轴,且,点B在第二象限,∴点B一定在点A的左侧,且两个点纵坐标相同,∴,即,故选:A.【点睛】题目主要考查坐标系中点的坐标,理解题意,掌握坐标系中点的特征是解题关键.10、D【分析】利用平移及关于y轴对称点的性质即可求解.【详解】解:把向上平移2个单位后得到点 ,∵点与点关于y轴对称,∴ , ,∴ ,∴,故选:D.【点睛】本题考查坐标与图形变化平移、轴对称的性质及负整数指数幂,解题关键是掌握平移、轴对称的性质及负整数指数幂.二、填空题1、【分析】直接利用关于原点对称点的性质得出x,y的值进而得出答案.【详解】解:∵点与关于原点对称,∴ 解得:,则xy的值是:-3.故答案为:-3.【点睛】此题主要考查了关于原点对称点的性质,正确得出的值是解题关键.2、【分析】由题意根据点A第四次关于y轴对称后在第一象限,即点A回到初始位置,所以,每四次对称为一个循环组依次循环进行分析即可得出答案.【详解】解:根据题意可知:点A第四次关于y轴对称后在第一象限,即点A回到初始位置,所以,每四次对称为一个循环组依次循环,∵2021÷4=505…1,∴经过第2021次变换后所得的A点与第一次关于x轴对称变换的位置相同,在第四象限,坐标为.故答案为:.【点睛】本题考查轴对称的性质以及点的坐标变换规律,读懂题目信息,观察出每四次对称为一个循环组依次循环是解题的关键.3、(1,﹣1)【分析】先利用勾股定理以及正方形、旋转的性质求出对应边长,再通过边长找出对应的前几个坐标,会发现:关于B的坐标,是每8个一循环,找到第2022个是对应的循环中的第6个,从而确定B2022坐标.【详解】∵点A的坐标为(1,0),∴OA=1,∵四边形OABC是正方形,∴∠OAB=90°,AB=OA=1,∴B(1,1),连接OB,如图:由勾股定理得:OB=,由旋转的性质得:OB=OB1=OB2=OB3=…=,∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(0,),B2(﹣1,1),B3(﹣,0),B4(﹣1,﹣1),B5(0,﹣),B6(1,﹣1),…,发现是8次一循环,则2022÷8=252…6,∴点B2022的坐标为(1,﹣1),故答案为:(1,﹣1).【点睛】本题主要是图形旋转类的坐标规律问题,利用图形以及旋转的性质求出对应前几个相应点的坐标,从而发现其中规律,应用规律进行求解是解决此类问题的关键.4、8【分析】根据题意可得,求出的值,代入计算即可.【详解】解:点在第二象限,且离轴的距离为3,,解得,.故答案为:8.【点睛】本题考查了平面直角坐标系-点到坐标轴的距离,绝对值的意义,跟具体题意求出的值是解本题的关键.5、(-2,-7)【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.【详解】解:点(2,-7)关于y轴对称的点的坐标是(-2,-7).故答案为:(-2,-7).【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.三、解答题1、(1)图见解析,;(2)图见解析,,,;(3)见解析【分析】(1)利用关于x轴对称的点的坐标特征得到、、的坐标,然后描点即可;(2)根据网格特点和对称的性质,分别作出A、B、C关于直线l的对称点、、,然后写出它们的坐标;(3)把AB绕A点逆时针旋转90°得到AE,连接BE交AC于D.【详解】解:(1)如图,为所作,;(2)如图,为所作,,,;(3)如图,BD为所作. 【点睛】本题考查了平面直角坐标系中点的坐标,画轴对称图形,解题的关键是正确写出点的坐标.2、(1);(2);(3)【分析】(1)利用x轴上P点的纵坐标为0求解即可得;(2)利用平行于y轴的直线上的点的横坐标相等列方程求解即可;(3)在第二象限,且到x轴、y轴的距离相等的点的横纵坐标互为相反数,再利用相反数的性质列方程求解可得,将其代入代数式求解即可.(1)解:∵点P在x轴上,∴P点的纵坐标为0,∴,解得:,∴,∴.(2)解:∵直线轴,∴,解得:,∴,∴.(3)解:∵点P在第二象限,且它到x轴、y轴的距离相等,∴.解得:.∴,∴的值为2020.【点睛】本题主要考查平面直角坐标系内点的坐标特点.分别考查了坐标轴上点的坐标特点、平行于坐标轴的直线上点坐标的特点、到坐标轴距离相等的点的坐标特点,理解题意,熟练掌握坐标系中不同条件下的坐标特点是解题关键.3、(1)画图见解析,,,;(2)【分析】(1)根据关于轴对称的点的坐标特征写出点,,的坐标,然后描点即可;(2)根据三角形面积公式,利用四边形的面积进行计算.【详解】解:(1)根据题意得:点,,关于轴的对称点分别为,,,如图,为所作;(2)四边形的面积.【点睛】本题主要考查了图形的变换——轴对称,坐标与图形,熟练掌握轴对称图形的关键是找到对称轴,图形关于对称轴折叠前后对应线段,对应角相等是解题的关键.4、(1)作图见解析;(2)作图见解析,【分析】(1)分别求出A,B,C关于y轴对称的点,连接即可;(2)根据轴对称的性质计算即可;【详解】(1)由题可知,A,B,C关于y轴对称的点为,,,作图如下;(2)根据题意可得:,设与y轴交于点M,则是等腰直角三角形,∴,∴;【点睛】本题主要考查了轴对称的性质应用和等腰直角三角形的性质,准确作图计算是解题的关键.5、(1);(2)见解析;(3)12【分析】(1)根据平面直角坐标系写出点的坐标即可;(2)找到点关于轴对称的对应点,顺次连接,则即为所求;(3)根据正方形的面积减去三个三角形的面积即可求得的面积【详解】(1)根据平面直角坐标系可得的坐标为,故答案为:(2)如图所示,找到点关于轴对称的对应点,顺次连接,则即为所求;(3)的面积为故答案为:【点睛】本题考查了坐标与图形,轴对称的性质与作图,掌握轴对称的性质是解题的关键.6、(1)见详解;(2)(1,2);(3)(-a,-b).【分析】(1)分别作出A、B二点关于y轴的对称点A1、B1,再分别作出A1、B1二点关于x轴的对称点A2、B2即可;(2)根据图示得出坐标即可;(3)根据轴对称的性质得出坐标即可.【详解】解:(1)如图所示:线段A1B1和线段A2B2即为所求;(2) 点A2的坐标为(1,2);(3)点M(a,b),关于y轴对称的对称点M1(-a,b),点M1关于x轴对称的对称点M2(-a,-b),故点M2的坐标为(-a,-b).【点睛】本题考查作图-轴对称变换,轴对称-最短问题,两点之间线段最短等知识,解题的关键是熟练掌握轴对称的概念,利用对称解决最短问题,属于中考常考题型.7、(1)(3,2)(2)①(3,-1);②-1<t<1或2<t<4【分析】(1)点先关于轴对称的点坐标为,再关于轴对称的点坐标为,故可得点的伴随图形点坐标;(2)①时,点坐标为,直线为,此时点先关于轴对称的点坐标为,再关于轴对称的点坐标为,进而得到点的伴随图形点坐标;②由题意知直线为直线,、、三点的轴,的伴随图形点坐标依次表示为:,,,由题意可得,或解出的取值范围即可.(1)解:由题意知沿轴翻折得点坐标为;沿轴翻折得点坐标为故答案为:.(2)①解:.,点坐标为,直线为,沿轴翻折得点坐标为沿直线翻折得点坐标为即为故答案为:②解:∵直线经过原点∴直线为∴、、的伴随图形点坐标先沿轴翻折,点坐标依次为,,;然后沿直线翻折,点坐标依次表示为:,,由题意可知:或解得:或【点睛】本题考查了直角坐标系中的点对称,几何图形翻折.解题的关键在于正确的将翻折后的点坐标表示出来.8、(1)点A的坐标;(2)P的坐标为:或或.【分析】(1)根据已知条件得到,得到,证明得到,再根据已知点的坐标计算即可;(2)根据题意:考虑作的对称图形,然后根据全等三角形的性质求解即可得.【详解】解:(1)过点A作轴,∵,∴,∵在中:,∴,∵轴,∴,在与中,,∴,∴,又∵点B坐标为,点C坐标为,∴,,∴,∴点A的坐标;(2)①作关于x轴的对称图形得到,∴,∵点B坐标为,点C坐标为,∴,,∴,∴点A的坐标;∴;②∵点O,C关于直线对称,∴作关于直线的对称图形得到,过点作轴,∴,在与中,,∴,∴,结合点所在的位置可得:;③作关于x轴的对称图形得到,∴,即,∴与横坐标相同,纵坐标互为相反数,可得:;综上所述:P的坐标为:或或.【点睛】本题主要考查了坐标与图形的应用,等腰三角形的判定与性质,全等三角形的判定与性质,根据题意作出相应图形进行分类讨论是解题关键.9、(1)画图见解析,A1(1,5)、B1(1,0)、C1(4,3);(2)见解析【分析】(1)根据关于y轴对称的点的坐标特征:纵坐标相同,横坐标互为相反数得到A、B、C对应点A1、B1、C1的坐标,然后描出A1、B1、C1,最后顺次连接A1、B1、C1即可;(2)如图所示,由图形可得,即可推出.【详解】解:(1)∵△A1B1C1是△ABC关于y轴的对称图形,A(﹣1,5),B(﹣1,0),C(﹣4,3).∴点A1(1,5)、B1(1,0)、C1(4,3),如图所示,△A1B1C1即为所求;(2)如图所示,由图形得:,∴EF是BC的两个三等分点,∴,∴线段AE,AF即为所求.【点睛】本题主要考查了坐标与图形变化—轴对称,画轴对称图形,三角形面积问题,解题的关键在于能够熟练掌握关于y轴对称的点的坐标特征.10、(1)见解析;(2),,;(3)【分析】(1)根据轴对称图形的特点画出图形即可;(2)根据所画出的图形写出点的坐标;(3)首先把三角形放在一个大正方形内,再用大正方形的面积减去四周三角形的面积即可.【详解】解:(1)如图所示:(2)根据平面直角坐标系可得:,,;故答案为:,,(3)△ABC的面积=3×5-×3×3-×2×1-×5×2=.【点睛】本题主要考查了轴对称图形,以及点的坐标,三角形的面积,关键是掌握在计算不规则图形的面积时,可以利用可以用补图的方法.
相关试卷
这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后测评,共27页。试卷主要包含了点在,在平面直角坐标系中,点P,点P关于原点O的对称点的坐标是等内容,欢迎下载使用。
这是一份2021学年第十五章 平面直角坐标系综合与测试当堂检测题,共27页。试卷主要包含了点在,已知点A,如果点P,若平面直角坐标系中的两点A,已知点M等内容,欢迎下载使用。
这是一份初中数学第十五章 平面直角坐标系综合与测试课后复习题,共26页。试卷主要包含了在下列说法中,能确定位置的是,已知A,如果点P等内容,欢迎下载使用。