终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    精品试题沪教版七年级数学第二学期第十五章平面直角坐标系同步测评练习题(无超纲)

    立即下载
    加入资料篮
    精品试题沪教版七年级数学第二学期第十五章平面直角坐标系同步测评练习题(无超纲)第1页
    精品试题沪教版七年级数学第二学期第十五章平面直角坐标系同步测评练习题(无超纲)第2页
    精品试题沪教版七年级数学第二学期第十五章平面直角坐标系同步测评练习题(无超纲)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时作业

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时作业,共30页。试卷主要包含了已知点A象限,若点P,点P关于原点对称的点的坐标是等内容,欢迎下载使用。
    七年级数学第二学期第十五章平面直角坐标系同步测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、在平面直角坐标系中,已知点A(-4,3)与点B关于y轴对称,则点B的坐标为( )
    A.(-4,-3) B.(4,3) C.(4,-3) D.(-4,3)
    2、平面直角坐标系中,将点A(,)沿着x的正方向向右平移()个单位后得到B点,则下列结论:①B点的坐标为(,);②线段AB的长为3个单位长度;③线段AB所在的直线与x轴平行;④点M(,)可能在线段AB上;⑤点N(,)一定在线段AB上.其中正确的结论有( )
    A.2个 B.3个 C.4个 D.5个
    3、已知点A(x+2,x﹣3)在y轴上,则x的值为(  )
    A.﹣2 B.3 C.0 D.﹣3
    4、已知点A(n,3)在y轴上,则点B(n-1,n+1)在第()象限
    A.四 B.三 C.二 D.一
    5、若点P(2,b)在第四象限内,则点Q(b,-2)所在象限是( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    6、点P(-3,1)关于原点对称的点的坐标是( )
    A.(-3,1) B.(3,1) C.(3,-1) D.(-3,-1)
    7、已知点M(2,﹣3),点N与点M关于x轴对称,则点N的坐标是(  )
    A.(﹣2,3) B.(﹣2,﹣3) C.(3,2) D.(2,3)
    8、若点M在第四象限,且M到x轴的距离为1,到y轴的距离为2,则点M的坐标为( )
    A.(1,-2) B.(2,1) C.(-2,1) D.(2,-1)
    9、如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,,是斜边在x轴上,斜边长分别为2,4,6,...的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为(  )

    A.-1008 B.-1010 C.1012 D.-1012
    10、根据下列表述,能够确定具体位置的是(  )
    A.北偏东25°方向 B.距学校800米处
    C.温州大剧院音乐厅8排 D.东经20°北纬30°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、若点(-1,m)与点(n,2)关于y轴对称,则的值为__________.
    2、已知在平面直角坐标系中,点在第一象限,且点到轴的距离为2,到轴的距离为5,则的值为______.
    3、若点P(-5,a)与Q(b,)关于x轴对称,则代数式的值为___.
    4、如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点O出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2021的坐标为_____.

    5、坐标平面内的点P(m,﹣2020)与点Q(2021,n)关于原点对称,则m+n=_________.
    三、解答题(10小题,每小题5分,共计50分)
    1、如图所示,在平面直角坐标系中,已知,,.
    (1)在平面直角坐标系中画出,并求出的面积;
    (2)在(1)的条件下,把先关于y轴对称得到,再向下平移3个单位得到,则中的坐标分别为( ),( ),( );(直接写出坐标)
    (3)已知为轴上一点,若的面积为4,求点的坐标.

    2、在平面直角坐标系xOy中,点M(2,t-2)与点N关于过点(0,t)且垂直于y轴的直线对称.
    (1)当t =-3时,点N的坐标为 ;
    (2)以MN为底边作等腰三角形MNP.
    ①当t =1且直线MP经过原点O时,点P坐标为 ;
    ②若MNP上所有点到x轴的距离都不小于a(a是正实数),则t的取值范围是 (用含a的代数式表示)
    3、已知点,解答下列各题.
    (1)点P在x轴上,求出点P的坐标;
    (2)点Q的坐标为=,直线轴;求出点P的坐标;
    (3)若点P在第二象限,且它到x轴、y轴的距离相等,求的值.
    4、多多和爸爸、妈妈周末到白银市金鱼公园动物园游玩,回到家后,她利用平面直角坐标系画出了白银市金鱼公园动物园的景区地图,如图所示.可是她忘记了在图中标出原点、x轴和y轴,只知道东北虎的坐标为.请你帮她画出平面直角坐标系,并写出其他各景点的坐标.

    5、如图,在平面直角坐标系中,的三个顶点都在格点上,点的坐标为,请回答下列问题.
    (1)画出关于x轴对称的,并写出点的坐标(___,___)
    (2)点P是x轴上一点,当的长最小时,点P坐标为______;
    (3)点M是直线BC上一点,则AM的最小值为______.

    6、△ABC在平面直角坐标系中的位置如图所示,已知A(﹣2,3),B(﹣3,1),C(﹣1,2).
    (1)画出△ABC绕点O逆时针旋转90°后得到的△A1B1C1;
    (2)画出△ABC关于原点O的对称图形△A2B2C2;
    (3)直接写出下列点的坐标:A1   ,B2   .

    7、如图是某地火车站及周围的简单平面图.(图中每个小正方形的边长代表1千米)

    (1)请以火车站所在的位置为坐标原点,以图中小正方形的边长为单位长度,建立平面直角坐标系,并写出体育场A、超市B、市场C、文化宫D的坐标;
    (2)在(1)中所建的坐标平面内,若学校E的位置是(﹣3,﹣3),请在图中标出学校E的位置.
    8、在平面直角坐标系xOy中,直线l:x=m表示经过点(m,0),且平行于y轴的直线.给出如下定义:将点P关于x轴的对称点,称为点P的一次反射点;将点关于直线l的对称点,称为点P关于直线l的二次反射点.例如,如图,点M(3,2)的一次反射点为(3,-2),点M关于直线l:x=1的二次反射点为(-1,-2).
    已知点A(-1,-1),B(-3,1),C(3,3),D(1,-1).

    (1)点A的一次反射点为 ,点A关于直线:x=2的二次反射点为 ;
    (2)点B是点A关于直线:x=a的二次反射点,则a的值为 ;
    (3)设点A,B,C关于直线:x=t的二次反射点分别为,,,若△与△BCD无公共点,求t的取值范围.
    9、如图,在平面直角坐标系中,的三个顶点均在格点上.

    (1)在网格中作出关于轴对称的图形;
    (2)直接写出以下各点的坐标:________,________,________;
    (3)网格的单位长度为1.则________.
    10、在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.
    (1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1 ,3),点B坐标为(2 ,1);
    (2)请画出△ABC关于y轴对称的图形△A1B1C1,并写出点B1的坐标为    ;
    (3)P为y轴上一点,当PB+PC的值最小时,P点的坐标为 .


    -参考答案-
    一、单选题
    1、B
    【分析】
    利用y轴对称的点的坐标特征:横坐标互为相反数,纵坐标相等,即可求出点B的坐标.
    【详解】
    解:∵ A(-4,3) ,
    ∴关于y轴对称点B的坐标为(4,3).
    故答案为:B.
    【点睛】
    本题主要是考查了y轴对称的点的坐标特征,熟练掌握关于不同坐标轴对称的点的坐标特征,是解决此类问题的关键.
    2、B
    【分析】
    根据平移的方式确定平移的坐标即可求得B点的坐标,进而判断①,根据平移的性质即可求得的长,进而判断②,根据平移的性质可得线段AB所在的直线与x轴平行,即可判断③,根据纵坐标的特点即可判断④⑤
    【详解】
    解:∵点A(,)沿着x的正方向向右平移()个单位后得到B点,
    ∴B点的坐标为(,);
    故①正确;
    则线段AB的长为;
    故②不正确;
    ∵A(,),B(,);纵坐标相等,即点A,B到x轴的距离相等
    ∴线段AB所在的直线与x轴平行;
    故③正确
    若点M(,)在线段AB上;
    则,即,不存在实数
    故点M(,)不在线段AB上;
    故④不正确
    同理点N(,)在线段AB上;
    故⑤正确
    综上所述,正确的有①③⑤,共3个
    故选B
    【点睛】
    本题考查了平移的性质,平面直角坐标系中点到坐标轴的距离,掌握平移的性质是解题的关键.
    3、A
    【分析】
    根据y轴上点的横坐标为0列方程求解即可.
    【详解】
    解:∵点A(x+2,x﹣3)在y轴上,
    ∴x+2=0,
    解得x=-2.
    故选:A.
    【点睛】
    本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.
    4、C
    【分析】
    直接利用y轴上点的坐标特点得出n的值,进而得出答案.
    【详解】
    解:∵点A(n,3)在y轴上,
    ∴n=0,
    则点B(n-1,n+1)为:(-1,1),在第二象限.
    故选:C.
    【点睛】
    本题主要考查了点的坐标,正确得出n的值是解题关键.
    5、C
    【分析】
    根据点P(2,b)在第四象限内,确定的符号,即可求解.
    【详解】
    解:点P(2,b)在第四象限内,∴,
    所以,点Q(b,-2)所在象限是第三象限,
    故选:C.
    【点睛】
    本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,解决本题的关键是要熟练掌握点在各象限的符号特征.
    6、C
    【分析】
    据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),然后直接作答即可.
    【详解】
    解:根据中心对称的性质,可知:点P(3,1)关于原点O中心对称的点的坐标为(3,1).
    故选:C.
    【点睛】
    本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形.
    7、D
    【分析】
    根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接得到答案.
    【详解】
    ∵点M(2,﹣3),点N与点M关于x轴对称,
    ∴点N的坐标是(2,3),
    故选:D.
    【点睛】
    本题考查了坐标轴中轴对称变化,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
    8、D
    【分析】
    先判断出点的横、纵坐标的符号,再根据点到轴、轴的距离即可得.
    【详解】
    解:点在第四象限,
    点的横坐标为正数,纵坐标为负数,
    点到轴的距离为1,到轴的距离为2,
    点的纵坐标为,横坐标为2,
    即,
    故选:D.
    【点睛】
    本题考查了点坐标,熟练掌握各象限内的点坐标的符号规律是解题关键.
    9、C
    【分析】
    首先确定角码的变化规律,利用规律确定答案即可.
    【详解】
    解:∵各三角形都是等腰直角三角形,
    ∴直角顶点的纵坐标的长度为斜边的一半,
    A3(0,0),A7(2,0),A11(4,0)…,
    ∵2021÷4=505余1,
    ∴点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)÷2=1012,
    ∴A2021的坐标为(1012,0).
    故选:C
    【点睛】
    本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键.
    10、D
    【分析】
    根据确定位置的方法即可判断答案.
    【详解】
    A. 北偏东25°方向不能确定具体位置,缺少距离,故此选项错误;
    B. 距学校800米处不能确定具体位置,缺少方向,故此选项错误;
    C. 温州大剧院音乐厅8排不能确定具体位置,应具体到8排几号,故此选项错误;
    D. 东经20°北纬30°可以确定一点的位置,故此选项正确.
    故选:D.
    【点睛】
    本题考查确定位置的方法,掌握确定位置要具体到一点是解题的关键.
    二、填空题
    1、3
    【分析】
    根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出m、n的值,然后相加计算即可得解.
    【详解】
    解:∵点(-1,m)与点(n,2)关于y轴对称,
    ∴,,
    ∴;
    故答案为:3.
    【点睛】
    本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:
    (1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;
    (2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.
    2、7
    【分析】
    由题意得,,,即可得.
    【详解】
    解:由题意得,,,
    则,
    故答案为:7.
    【点睛】
    本题考查了点的坐标特征,解题的关键是理解题意.
    3、##
    【分析】
    先利用横坐标互为相反数,纵坐标不变求解 再逆用积的乘方公式即可得到答案.
    【详解】
    解: 点P(-5,a)与Q(b,)关于x轴对称,


    故答案为:
    【点睛】
    本题考查的是关于轴对称的点的坐标特点,积的乘方的逆运算,掌握“公式 与关于轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数”是解本题的关键.
    4、(-2,0)
    【分析】
    根据中心对称的性质找出部分Pn的坐标,根据坐标的变化找出变化规律“P6n(0,0),P6n+1(2,0),P6n+2(−2,2),P6n+3(0,−2),P6n+4(2,2),P6n+5(−2,0)(n为自然数)”,依此规律即可得出结论.
    【详解】
    解:观察,发现规律:
    P0(0,0),P1(2,0),P2(−2,2),P3(0,−2),P4(2,2),P5(−2,0),P6(0,0),P7(2,0),…,
    ∴P6n(0,0),P6n+1(2,0),P6n+2(−2,2),P6n+3(0,−2),P6n+4(2,2),P6n+5(−2,0)(n为自然数).
    ∵2021=6×336+5,
    ∴P2020(-2,0).
    故答案为:(-2,0).
    【点睛】
    本题考查了规律型中的点的坐标以及中心对称的性质,解题的关键是找出变化规律“P6n(0,0),P6n+1(2,0),P6n+2(−2,2),P6n+3(0,−2),P6n+4(2,2),P6n+5(−2,0)(n为自然数)”.本题属于基础题,难度不大,解决该题型题目时,根据题意列出部分Pn点的坐标,根据坐标的变化找出变化规律是关键.
    5、-1
    【分析】
    根据“关于原点对称的点,横坐标与纵坐标都互为相反数”求出m、n的值,然后相加计算即可得解.
    【详解】
    解:∵点P(m,-2020)与点Q(2021,n)关于原点对称,
    ∴m=﹣2021,n=2020,
    ∴m+n=﹣1.
    故答案为:-1.
    【点睛】
    本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.
    三、解答题
    1、(1)见解析,4;(2)0,-2,-2,-3,-4,0;(3)或.
    【分析】
    (1)先画出△ABC,然后再利用割补法求△ABC得面积即可;
    (2)先作出,然后结合图形确定所求点的坐标即可;
    (3)先求出PB的长,然后分P在B的左侧和右侧两种情况解答即可.
    【详解】
    解:(1)画出如图所示:
    的面积是:;
    (2)作出如图所示,则(0,-2),( -2,-3),(-4,0)
    故填:0,-2,-2,-3,-4,0;
    (3)∵P为x轴上一点,的面积为4,
    ∴,
    ∴当P在B的右侧时,横坐标为:
    当P在B的左侧时,横坐标为,
    故P点坐标为:或.

    【点睛】
    本题主要考查了轴对称、三角形的平移、三角形的面积以及平面直角坐标系中点的坐标等知识点,根据题意画出图形成为解答本题的关键.
    2、(1)(2,-1);(2)①(-2,1);②t≥a+2或t≤-a-2
    【分析】
    (1)先求出对称轴,再表示N点坐标即可;
    (2)①以MN为底边作等腰三角形MNP,则点P在直线y=t=1上,直线OM与y=1的交点即为所求;
    ②表示出M、N、P的坐标,比较纵坐标的绝对值即可.
    【详解】
    (1)过点(0,t)且垂直于y轴的直线解析式为y=t
    ∵点M(2,t-2)与点N关于过点(0,t)且垂直于y轴的直线对称
    ∴可以设N点坐标为(2,n),且MN中点在y=t上
    ∴,记得
    ∴点N坐标为
    ∴当t =-3时,点N的坐标为
    (2)①∵以MN为底边作等腰三角形MNP,且点M(2,t-2)与点N直线y=t对称.
    ∴点P在直线y=t上,且P是直线OM与y=1的交点
    当t =1时M(2,-1),N(2,3)
    ∴OM直线解析式为
    ∴当y=1时,
    ∴P点坐标为(-2,1)
    ②由题意得,点M坐标为(2,t-2),点N坐标为,点P坐标为
    ∵,MNP上所有点到x轴的距离都不小于a
    ∴只需要或者
    当M、N、P都在x轴上方时,,此时,解得t≥a+2
    当MNP上与x轴有交点时,此时MNP上所有点到x轴的距离可以为0,不符合要求;
    当M、N、P都在x轴下方时,,此时,解得t≤-a-2
    综上t≥a+2或t≤-a-2
    【点睛】
    本题考查坐标与轴对称、等腰三角形的性质等知识,解题的关键是利用轴对称表示坐标,属于中考常考题型.
    3、
    (1);
    (2);
    (3)
    【分析】
    (1)利用x轴上P点的纵坐标为0求解即可得;
    (2)利用平行于y轴的直线上的点的横坐标相等列方程求解即可;
    (3)在第二象限,且到x轴、y轴的距离相等的点的横纵坐标互为相反数,再利用相反数的性质列方程求解可得,将其代入代数式求解即可.
    (1)
    解:∵点P在x轴上,
    ∴P点的纵坐标为0,
    ∴,
    解得:,
    ∴,
    ∴.
    (2)
    解:∵直线轴,
    ∴,
    解得:,
    ∴,
    ∴.
    (3)
    解:∵点P在第二象限,且它到x轴、y轴的距离相等,
    ∴.
    解得:.



    ∴的值为2020.
    【点睛】
    本题主要考查平面直角坐标系内点的坐标特点.分别考查了坐标轴上点的坐标特点、平行于坐标轴的直线上点坐标的特点、到坐标轴距离相等的点的坐标特点,理解题意,熟练掌握坐标系中不同条件下的坐标特点是解题关键.
    4、两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5)
    【分析】
    先利用东北虎的坐标找到坐标原点,然后以坐标原点建系,进而找出其他景点的坐标.
    【详解】
    解:由东北虎的坐标可知:坐标原点即为南门,以南门为坐标原点建系,如下图所示:

    故:两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5).
    【点睛】
    本题主要是考查了写出直角坐标系中的点的坐标,解题的关键通过已知条件,找到坐标原点,进而才能求出其他点的坐标.
    5、(1)5,-3;(2)(,0);(3)
    【分析】
    (1)利用关于x轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;
    (2)连接BC1交x轴于点P,利用两点之间线段最短可判断P点满足条件,利用待定系数法求得直线BC1的解析式,即可求解;
    (3)利用割补法求得△ABC的面积,利用两点之间的距离公式求得BC的长,再利用面积法即可求解.
    【详解】
    解:(1)如图,△A1B1C1为所作,点C1的坐标为(5,-3);

    故答案为:5,-3;
    (2)如图,点P为所作.
    设直线BC1的解析式为y=kx+b,
    ∵点C1的坐标为(5,-3),点B的坐标为(1,2),
    ∴,解得:,
    ∴直线BC1的解析式为y=x+,
    当y=0时,x=,
    ∴点P的坐标为(,0);
    故答案为:(,0);
    (3)根据垂线段最短,当AM垂直BC时,垂线段AM取得最小值,
    △ABC的面积为2×4-×2×1-×4×1-×3×1=;
    BC=,
    ∵××AM=,
    ∴AM=.
    故答案为:.
    【点睛】
    本题考查了作图-轴对称变换:几何图形都可看作是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径问题.注意:关于x轴对称的点,横坐标相同,纵坐标互为相反数.
    6、(1)见解析;(2)见解析;(3)(-3,-2),(3,-1)
    【分析】
    (1)先根据网格找到A、B、C的对应点A1、B1、C1,然后顺次连接A1、B1、C1即可;
    (2)先根据网格找到A、B、C的对应点A2、B2、C2,然后顺次连接A2、B2、C2即可;
    (3)根据(1)(2)说画图形求解即可.
    【详解】
    解:(1)如图所示,即为所求;
    (2)如图所示,即为所求;

    (3)由图可知,的坐标为(-3,-2),的坐标为(3,-1),
    故答案为:(-3,-2);(3,-1).
    【点睛】
    本题主要考查了坐标与图形变化—旋转变化,轴对称变化,画旋转图形和轴对称图形,解题的关键在于能够熟练掌握相关知识进行求解.
    7、(1)见解析,体育场A的坐标为(﹣4,3)、超市B的坐标为(0,4)、市场C的坐标为(4,3)、文化宫D的坐标为(2,﹣3);(2)见解析
    【分析】
    (1)以火车站所在的位置为坐标原点,建立平面直角坐标系,即可表示出体育场A、超市B市场C、文化宫D的坐标.
    (2)根据点的坐标的意义描出点E.
    【详解】
    解:(1)平面直角坐标系如图所示,体育场A的坐标为(﹣4,3)、超市B的坐标为(0,4)、市场C的坐标为(4,3)、文化宫D的坐标为(2,﹣3).
    (2)如图,点E即为所求.

    【点睛】
    本题考查了坐标确定位置,主要是对平面直角坐标系的定义和点的坐标的写法的考查,是基础题.
    8、(1)(-1,1);(5,1);(2)-2;(3)<-2或>1.
    【分析】
    (1)根据一次反射点和二次反射点的定义求解即可;
    (2)根据二次反射点的意义求解即可;
    (3)根据题意得,,,分<0和>0时△与△BCD无公共点,求出t的取值范围即可.
    【详解】
    解:(1)根据一次反射点的定义可知,A(-1,-1)一次反射点为(-1,1),
    点A关于直线:x=2的二次反射点为(5,1)
    故答案为: (-1,1);(5,1).
    (2)∵A(-1,-1),B(-3,1),且点B是点A关于直线:x=a的二次反射点,

    解得,
    故答案为: -2.
    (3)由题意得,(-1,1),(-3,-1),(3,-3),点D(1,-1)在线段上.
    当<0时,只需关于直线=的对称点在点B左侧即可,如图1.
    ∵当与点B重合时,=-2,
    ∴当<-2时,△与△BCD无公共点.
    当>0时,只需点D关于直线x=的二次反射点在点D右侧即可,如图2,
    ∵当与点D重合时,=1,
    ∴当>1时,△与△BCD无公共点.
    综上,若△与△BCD无公共点,的取值范围是<-2,或>1.

    【点睛】
    本题考查了轴对称性质,动点问题,新定义二次反射点的理解和运用;解题关键是对新定义二次反射点的正确理解.
    9、(1)见解析;(2);; ;(3)5
    【分析】
    (1)利用轴对称的性质分别作出A,B,C的对应点A1,B1,C1即可;
    (2)根据点的位置写出坐标即可;
    (3)把三角形的面积看成矩形面积减去周围三个三角形面积即可.
    【详解】
    解:(1)如图,△A1B1C1即为所求;
    (2)A1(3,4),B1(5,2),C1(2,0).
    故答案为:(3,4),(5,2),(2,0);
    (3)网格的单位长度为1,则=3×4-×2×3-×2×2-×1×4=5,
    故答案为:5.

    【点睛】
    本题考查轴对称,三角形的面积等知识,解题的关键是掌握轴对称的性质,学会利用分割法求三角形面积.
    10、(1)见详解;(2)△A1B1C1即为所求,见详解,(-2,1);(3)(0,3).
    【分析】
    (1)根据点A及点B的坐标,易得y轴在A的左边一个单位,x轴在A的下方3个单位,建立直角坐标系即可;
    (2)根据平面直角坐标系求出点C坐标,根据ABC关于y轴对称的图形为△A1B1C1,求出A1(-1,3),B1(-2,1),C1(-4,7),描点A1(-1,3),B1(-2,1),C1(-4,7),再顺次连接即可画出ABC关于y轴对称的图形为△A1B1C1;
    (3)过C1作y轴平行线与过B作x轴平行线交于G,BG交y轴于H,直接利用轴对称求最短路线的方法,根据点C的对称点为C1,连接BC1与y轴相交,此交点即为点P即可得出PB+PC的值最小,先证△GBC1为等腰直角三角形,再证△PHB为等腰直角三角形,最后求出y轴交点坐标即可.
    【详解】
    解:(1)点A坐标为(1 ,3),点B坐标为(2 ,1)
    点A向左平移1个单位为y轴,再向下平移3个单位为x轴,建立如图平面直角坐标系,
    如图所示:即为作出的平面直角坐标系;

    (2)根据图形得出出点C(4,7)
    ∵△ABC关于y轴对称的图形△A1B1C1,关于y轴对称的点的特征是横坐标互为相反数,纵坐标不变,
    ∵A(1,3),B (2,1),C(4,7),
    ∴A1(-1,3),B1(-2,1),C1(-4,7),
    在平面直角坐标系中描点A1(-1,3),B1(-2,1),C1(-4,7),
    顺次连接A1B1, B1C1, C1 A1,
    如图所示:△A1B1C1即为所求,
    故答案为:(-2,1);
    (3)如图所示:点P即为所求作的点.过C1作y轴平行线与过B作x轴平行线交于G,BG交y轴于H,
    ∵点C的对称点为C1,
    ∴连接BC1与y轴相交于一点即为点P,此时PB+PC的值最小,
    ∵B(2,1),C1(-4,7),
    ∴C1G=7-1=6,BG=2-(-4)=6,
    ∴C1G=BG,
    ∴△GBC1为等腰直角三角形,
    ∴∠GBC1=45°,
    ∵∠OHB=90°,
    ∴△PHB为等腰直角三角形,
    ∴yP-1=2-0,
    解得yP=3,
    ∴点P(0,3).
    故答案为(0,3).

    【点睛】
    本题考查了建立平面直角坐标系,画轴对称图形,等腰直角三角形判定与性质,最短路径,掌握轴对称的性质及轴对称与坐标的变化规律并利用其准确作图,待定系数法求解析式是解答本题的关键.

    相关试卷

    沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后作业题:

    这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后作业题,共29页。试卷主要包含了根据下列表述,能确定位置的是,点P关于y轴对称点的坐标是.,点P在第二象限内,P点到x等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时练习:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时练习,共29页。试卷主要包含了若点P,若平面直角坐标系中的两点A等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习题:

    这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习题,共29页。试卷主要包含了已知点M,平面直角坐标系内一点P,在平面直角坐标系中,点P等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map