![精品试卷沪教版七年级数学第二学期第十五章平面直角坐标系同步练习试卷(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12712363/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷沪教版七年级数学第二学期第十五章平面直角坐标系同步练习试卷(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12712363/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷沪教版七年级数学第二学期第十五章平面直角坐标系同步练习试卷(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12712363/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试当堂检测题
展开
这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试当堂检测题,共28页。试卷主要包含了平面直角坐标系内一点P,已知A,在平面直角坐标系中,点P等内容,欢迎下载使用。
七年级数学第二学期第十五章平面直角坐标系同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,将点(3,-4)平移到点(-1,4),经过的平移变换为( )A.先向左平移4个单位长度,再向上平移4个单位长度B.先向左平移4个单位长度,再向上平移8个单位长度C.先向右平移4个单位长度,再向下平移4个单位长度D.先向右平移4个单位长度,再向下平移8个单位长度2、若点P(m,1)在第二象限内,则点Q(1﹣m,﹣1)在( )A.第四象限 B.第三象限 C.第二象限 D.第一象限3、点向上平移2个单位后与点关于y轴对称,则( ).A.1 B. C. D.4、如图在平面直角坐标系中,点N与点F关于原点O对称,点F的坐标是(3,2),则点N的坐标是( )A.(﹣3,﹣2) B.(﹣3,2) C.(﹣2,3) D.(2,3)5、平面直角坐标系内一点P(﹣3,2)关于原点对称的点的坐标是( )A.(2,﹣3) B.(3,﹣2) C.(﹣2,﹣3) D.(2,3)6、已知A(2,5),若B是x轴上的一动点,则A、B两点间的距离的最小值为( )A.2 B.3 C.3.5 D.57、如图,在坐标系中用手盖住一点,若点到轴的距离为2,到轴的距离为6,则点的坐标是( )A. B. C. D.8、如图,直角坐标平面xOy内,动点P按图中箭头所示方向依次运动,第1次从点(﹣1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,﹣2),…按这样的运动规律,动点P第2021次运动到点( )A.(2020,﹣2) B.(2020,1) C.(2021,1) D.(2021,﹣2)9、在平面直角坐标系中,点P(2,5)关于y轴对称的点的坐标为( )A.(2,﹣5) B.(﹣2,﹣5) C.(﹣2,5) D.(﹣5,2)10、已知点M(m,﹣1)与点N(3,n)关于原点对称,则m+n的值为( )A.3 B.2 C.﹣2 D.﹣3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、平面直角坐标系中,点P(3,-4)到x轴的距离是________.2、点A的坐标为(5,-3),点A关于y轴的对称点为点B,则点B的坐标是__________.3、在平面直角坐标系中,点A(﹣3,1)绕原点逆时针旋转180°得到的点A'的坐标是 _____.4、若点与点关于原点对称,则_________.5、在平面直角坐标系中,已知点与点关于原点对称,则________,________.三、解答题(10小题,每小题5分,共计50分)1、如图,在平面直角坐标系中,A(1,4)、B(2,1)、C(﹣3,2).(1)作△ABC关于x轴对称图形△A'B'C';(2)求△CAA'的面积.2、如图是某地火车站及周围的简单平面图.(图中每个小正方形的边长代表1千米)(1)请以火车站所在的位置为坐标原点,以图中小正方形的边长为单位长度,建立平面直角坐标系,并写出体育场A、超市B、市场C、文化宫D的坐标;(2)在(1)中所建的坐标平面内,若学校E的位置是(﹣3,﹣3),请在图中标出学校E的位置.3、在平面直角坐标系中,的顶点坐标是、、.(1)画出绕点B逆时针旋转的;(2)画出关于点O的中心对称图形;(3)可由绕点M旋转得,请写出点M的坐标:________.4、如图,在平面直角坐标系中,已知点A(﹣1,5),B(﹣3,1)和C(4,0).(1)平移线段AB,使点A平移到点C,画出平移后所得的线段CD,并写出点D的坐标;(2)将线段AB绕点A逆时针旋转90°,画出旋转后所得的线段AE,并写出点E的坐标;(3)线段MN与线段AB关于原点成中心对称,点A的对应点为点M,①画出线段MN并写出点M的坐标;②直接写出线段MN与线段CD的位置关系.5、如图,在平面直角坐标系中,已知的三个顶点的坐标分别为、、.(1)画出将关于点对称的图形;(2)写出点、、的坐标.6、如图,方格图中每个小正方形的边长为1,点A,B,C都是格点.(1)画出△ABC关于直线MN对称的.(2)若B为坐标原点,请写出、、的坐标,并直接写出的长度..(3)如图2,A,C是直线同侧固定的点,D是直线MN上的一个动点,在直线MN上画出点D,使最小.(保留作图痕迹)7、已知A(-1,3),B(4,2),C(2,-1).(1)在平面直角坐标系中,画出△ABC及△ABC关于y轴的对称图形△A1B1C1;(2)P为x轴上一点,请在图中标出使△PAB的周长最小时的点P,并根据图象直接写出此时点P的坐标 .8、在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,的顶点的坐标分别是,,.(1)求的面积;(2)在图中作出关于轴的对称图形;(3)写出点,的坐标.9、在平面直角坐标系中,△ABC各顶点的坐标分别是A(2,5),B(1,2),C(4,1).(1)作△ABC关于y轴对称后的△A′B′C′,并写出A′,B′,C′的坐标;(2)在y轴上有一点P,当△PBB'和△ABC的面积相等时,求点P的坐标.10、如图,在平面直角坐标系中,的三个顶点都在格点上,点的坐标为,请回答下列问题.(1)画出关于x轴对称的,并写出点的坐标(___,___)(2)点P是x轴上一点,当的长最小时,点P坐标为______;(3)点M是直线BC上一点,则AM的最小值为______. -参考答案-一、单选题1、B【分析】利用平移中点的变化规律求解即可.【详解】解:∵在平面直角坐标系中,点(3,-4)的坐标变为(-1,4),∴点的横坐标减少4,纵坐标增加8,∴先向左平移4个单位长度,再向上平移8个单位长度.故选:B.【点睛】本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.2、A【分析】直接利用第二象限内点的坐标特点得出m的取值范围进而得出答案.【详解】∵点P(m,1)在第二象限内,∴m<0,∴1﹣m>0,则点Q(1﹣m,﹣1)在第四象限.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3、D【分析】利用平移及关于y轴对称点的性质即可求解.【详解】解:把向上平移2个单位后得到点 ,∵点与点关于y轴对称,∴ , ,∴ ,∴,故选:D.【点睛】本题考查坐标与图形变化平移、轴对称的性质及负整数指数幂,解题关键是掌握平移、轴对称的性质及负整数指数幂.4、A【分析】根据点F点N关于原点对称,即可求解.【详解】解:∵F点与N点关于原点对称,点F的坐标是(3,2),∴N点坐标为(﹣3,﹣2).故选:A【点睛】本题主要考查了关于原点对称的点的坐标特征,熟练掌握若两点关于原点对称,横纵坐标均互为相反数是解题的关键.5、B【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P(﹣x,﹣y),进而得出答案.【详解】解答:解:点P(﹣3,2)关于原点对称的点的坐标是:(3,﹣2).故选:B.【点睛】此题主要考查了关于原点对称点的坐标性质,正确记忆横纵坐标的关系是解题关键.6、D【分析】当AB⊥x轴时,AB距离最小,最小值即为点A纵坐标的绝对值,据此可得.【详解】解:∵A(﹣2,5),且点B是x轴上的一点,∵当AB⊥x轴时,AB距离最小,即B点(-2,0)∴A、B两点间的距离的最小值5.故选:D.【点睛】本题考查了直线外一点与直线上各点连接的所有线段中,垂线段最短;直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.7、C【分析】首先根据P点在第四象限,可以确定P点横纵坐标的符号,再由P到坐标轴的距离即可确定P点坐标.【详解】解:∵P点在第四象限,∴P点横坐标大于0,纵坐标小于0,∵P点到x轴的距离为2,到y轴的距离为6,∴P点的坐标为(6,-2),故选C.【点睛】本题主要考查了点所在的象限的坐标特征,点到坐标轴的距离,解题的关键在于能够熟练掌握第四象限点的坐标特征.8、B【分析】观察图形可知,每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,然后根据商和余数的情况确定运动后点的坐标即可.【详解】解:点的运动规律是每运动四次向右平移四个单位,,动点第2021次运动时向右个单位,点此时坐标为,故选:B.【点睛】本题主要考查平面直角坐标系下的规律探究题,解答时注意探究动点的运动规律,又要注意动点的坐标的象限符号.9、C【分析】关于轴对称的两个点的坐标特点:横坐标互为相反数,纵坐标不变,根据原理直接可得答案.【详解】解:点P(2,5)关于y轴对称的点的坐标为: 故选:C【点睛】本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的坐标特点:横坐标互为相反数,纵坐标不变”是解本题的关键.10、C【分析】利用两个点关于原点对称时,它们的坐标符号相反,即点关于原点的对称点是,进而求出即可.【详解】解:点与点关于原点对称,,,故.故选:C.【点睛】本题主要考查了关于原点对称点的坐标,解题的关键是正确掌握关于原点对称点的性质.二、填空题1、4【分析】根据点的坐标表示方法得到点P(3,﹣4)到x轴的距离是纵坐标的绝对值即|﹣4|,然后去绝对值即可.【详解】解:点P(3,-4)到x轴的距离为|﹣4|=4.故答案为:4.【点睛】此题主要考查了点到坐标上的距离,正确掌握点的坐标性质是解题关键.2、(-5,-3)【分析】关于y轴对称的点的特征:纵坐标不变,横坐标变为原来的相反数,据此可以求出B点坐标.【详解】解: 点A的坐标为(5,-3), 关于y轴对称的对称点B的坐标为(-5,-3).故答案为:(-5,-3).【点睛】本题考察直角坐标系、关于y轴对称的点的特征,是基础考点,掌握相关知识是解题的关键.3、(3,﹣1)【分析】由条件可知A点和A′点关于原点对称,可求得答案.【详解】解:∵将OA绕原点O逆时针旋转180°得到OA′,∴A点和A′点关于原点对称,∵A(﹣3,1),∴A′(3,﹣1),故答案为:(3,﹣1).【点睛】本题主要考查旋转的定义,由条件求得A和A′关于原点对称是解题的关键.4、【分析】利用原点对称的点的坐标特征可知:M点和N点的横坐标之和与纵坐标之和都为0,得到关于、的二元一次方程组,解方程求出、的值,进而求出.【详解】和点关于原点对称, 解得: , 故答案为:.【点睛】本题主要是考察了关于原点对称的点的特征,熟练掌握关于原点对称的点的横坐标之和与纵坐标之和都为0,是解决此类题的关键.5、2 2 【分析】关于原点对称的两个点的横纵坐标都互为相反数,根据特点列式求出a、b即可求得答案.【详解】解:∵点和点关于原点对称,∴,∴,故答案为:2;2.【点睛】本题主要考查了关于原点对称点的坐标特征,解二元一次方程组,熟记关于原点对称点的坐标特征并运用解题是关键.三、解答题1、(1)见解析;(2)16【分析】(1)分别作出三个顶点关于x轴的对称点,再首尾顺次连接即可;(2)直接根据三角形的面积公式求解即可.【详解】解:(1)如图所示,△A'B'C'即为所求.(2)△CAA'的面积为×8×4=16.【点睛】本题主要考查作图—轴对称变换,解题的关键是掌握轴对称变换的定义和性质.2、(1)见解析,体育场A的坐标为(﹣4,3)、超市B的坐标为(0,4)、市场C的坐标为(4,3)、文化宫D的坐标为(2,﹣3);(2)见解析【分析】(1)以火车站所在的位置为坐标原点,建立平面直角坐标系,即可表示出体育场A、超市B市场C、文化宫D的坐标.(2)根据点的坐标的意义描出点E.【详解】解:(1)平面直角坐标系如图所示,体育场A的坐标为(﹣4,3)、超市B的坐标为(0,4)、市场C的坐标为(4,3)、文化宫D的坐标为(2,﹣3).(2)如图,点E即为所求.【点睛】本题考查了坐标确定位置,主要是对平面直角坐标系的定义和点的坐标的写法的考查,是基础题.3、(1)画图见解析;(2)画图见解析;(3)【分析】(1)分别确定绕逆时针旋转后的对应点再顺次连接从而可得答案;(2)分别确定关于原点对称的对称点再顺次连接从而可得答案;(3)如图,由;是旋转对应点,则到旋转中心的距离相等,到旋转中心的距离相等,可得线段的垂直平分线的交点即为旋转中心,再根据在坐标系内的位置写出其坐标即可.【详解】解:(1)如图,是所求作的三角形,(2)如图,是所求作的三角形;(3)如图,;是旋转对应点, 到旋转中心的距离相等,到旋转中心的距离相等,则线段的垂直平分线的交点即为旋转中心,其坐标为:【点睛】本题考查的是旋转作图,中心对称的作图,确定旋转中心,掌握旋转的性质是解本题的关键.4、(1)作图见解析,点D的坐标为(2,-4);(2)作图见解析,点E的坐标为(3,3);(3)①作图见解析,点M的坐标为(1,-5);②MN∥CD.【分析】(1)根据点A平移到点C,即可得到平移的方向和距离,进而画出平移后所得的线段CD;(2)根据线段AB绕点A逆时针旋转90°,即可画出旋转后所得的线段AE;(3)①分别作出A,B的对应点M,N,连接即可;②由平行线的传递性可得答案.【详解】解:(1)如图所示,线段CD即为所求,点D的坐标为(2,-4);(2)如图所示,线段AE即为所求,点E的坐标为(3,3);(3)①如图所示,线段MN即为所求,点M的坐标为(1,-5);②∵线段MN与线段AB关于原点成中心对称,∴MN∥AB,∵线段CD是由线段AB平移得到的,∴CD∥AB,∴MN∥CD.【点睛】本题主要考查了利用平移变换和旋转变换作图,解题的关键是理解题意,灵活运用所学知识解决问题.5、(1)见解析;(2),,.【分析】(1)直接利用关于点O对称的性质得出对应点位置,顺次连接各个对应点,即可;(2)根据对应点位置直接写出坐标,即可.【详解】解:(1)如图所示,(2),,.【点睛】本题考查了利用中心对称变换在坐标系中作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.6、(1)画图见解析;(2),;(3)画图见解析【分析】(1)分别确定关于对称的对称点 再顺次连接从而可得答案;(2)根据在坐标系内的位置直接写其坐标与的长度即可;(3)先确定关于的对称点,再连接 交于 则 从而可得答案.【详解】解:(1)如图1,是所求作的三角形,(2)如图1,为坐标原点,则 (3)如图2,点即为所求作的点.【点睛】本题考查的是画轴对称图形,建立坐标系,用根据点的位置确定点的坐标,轴对称的性质,掌握“利用轴对称的性质得到两条线段和取最小值时点的位置”是解本题的关键.7、(1)见解析;(2)见解析,【分析】(1)根据关于y轴对称点的坐标特点得到△A1B1C1各顶点的坐标,然后描出各点,然后顺次连接即可;(2)作点A关于x轴的对称点A1,连接A1B交x轴与点P.【详解】解:(1)如图△ABC及△A1B1C1即为所求作的图形;(2)如图点P即为所求作的点,此时点P的坐标(2,0) .【点睛】本题主要考查的是轴对称变换,掌握关于轴对称点的坐标特点是解题的关键.8、(1);(2)见解析;(3)A1(1,5),C1(4,3)【分析】(1)根据三角形面积公式进行计算即可得;(2)可以由三个顶点的位置确定,只要能分别画出这三个顶点关于y轴的对称点,连接这些对称点即可得;(3)根据(2)即可写出.【详解】解:(1)(2)如下图所示: (3)A1(1,5);C1(4,3)【点睛】本题考查了画轴对称图形,解题的关键是掌握画轴对称图形的方法.9、(1)见解析;A′(﹣2,5),B'(﹣1,2),C'(﹣4,1);(2)P的坐标为(0,7)或(0,﹣3)【分析】(1)分别作出各点关于y轴的对称点,再顺次连接,并写出各点坐标即可;(2)根据三角形的面积公式,进而可得出P点坐标.【详解】解:(1)如图所示:A′(﹣2,5),B'(﹣1,2),C'(﹣4,1);(2)△ABC的面积=,∵BB'=2,∴P的坐标为(0,7)或(0,﹣3).【点睛】本题考查的是作图-轴对称变换,熟知轴对称的性质是解答此题的关键.10、(1)5,-3;(2)(,0);(3)【分析】(1)利用关于x轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)连接BC1交x轴于点P,利用两点之间线段最短可判断P点满足条件,利用待定系数法求得直线BC1的解析式,即可求解;(3)利用割补法求得△ABC的面积,利用两点之间的距离公式求得BC的长,再利用面积法即可求解.【详解】解:(1)如图,△A1B1C1为所作,点C1的坐标为(5,-3);故答案为:5,-3;(2)如图,点P为所作.设直线BC1的解析式为y=kx+b,∵点C1的坐标为(5,-3),点B的坐标为(1,2),∴,解得:,∴直线BC1的解析式为y=x+,当y=0时,x=,∴点P的坐标为(,0);故答案为:(,0);(3)根据垂线段最短,当AM垂直BC时,垂线段AM取得最小值,△ABC的面积为2×4-×2×1-×4×1-×3×1=;BC=,∵××AM=,∴AM=.故答案为:.【点睛】本题考查了作图-轴对称变换:几何图形都可看作是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径问题.注意:关于x轴对称的点,横坐标相同,纵坐标互为相反数.
相关试卷
这是一份2020-2021学年第十五章 平面直角坐标系综合与测试当堂达标检测题,共25页。试卷主要包含了一只跳蚤在第一象限及x轴,已知点P,在平面直角坐标系中,点P等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步练习题,共33页。试卷主要包含了若平面直角坐标系中的两点A等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试复习练习题,共30页。试卷主要包含了若平面直角坐标系中的两点A,在平面直角坐标系中,点A,点P关于原点对称的点的坐标是等内容,欢迎下载使用。