数学七年级下册第十五章 平面直角坐标系综合与测试课时练习
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、小明在介绍郑州外国语中学位置时,相对准确的表述为( )
A.陇海路以北B.工人路以西
C.郑州市人民政府西南方向D.陇海路和工人路交叉口西北角
2、如图,是由ABO平移得到的,点A的坐标为(-1,2),它的对应点的坐标为(3,4),ABO内任意点P(a,b)平移后的对应点的坐标为( )
A.(a,b)B.(-a,-b)C.(a+2,b+4)D.(a+4,b+2)
3、在平面直角坐标系中,点P(2,5)关于y轴对称的点的坐标为( )
A.(2,﹣5)B.(﹣2,﹣5)C.(﹣2,5)D.(﹣5,2)
4、△ABC在平面直角坐标系中的位置如图所示,将其绕点P顺时针旋转得到△A'B'C′,则点P的坐标是( )
A.(4,5)B.(4,4)C.(3,5)D.(3,4)
5、将点P(2,﹣1)以原点为旋转中心,顺时针旋转90°得到点P',则点P'的坐标是( )
A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣1,﹣2)
6、平面直角坐标系内与点P关于原点对称的点的坐标是( )
A.B.C.D.
7、点P的坐标为(﹣3,2),则点P位于( )
A.第一象限B.第二象限C.第三象限D.第四象限
8、直角坐标系中,点A(-3,4)与点B(3,-4)关于( )
A.原点中心对称B.轴轴对称C.轴轴对称D.以上都不对
9、若点M在第四象限,且M到x轴的距离为1,到y轴的距离为2,则点M的坐标为( )
A.(1,-2)B.(2,1)C.(-2,1)D.(2,-1)
10、已知点A(x,5)在第二象限,则点B(﹣x,﹣5)在( )
A.第一象限B.第二象限C.第三象限D.第四象限
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在平面直角坐标系中,将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是___________.
2、若点M(,a)关于y轴的对称点是点N(b,),则=________.
3、(1)把点P(2,-3)向右平移2个单位长度到达点,则点的坐标是_______.
(2)把点A(-2,-3)向下平移3个单位长度到达点B,则点B的坐标是_______.
(3)把点P(2,3)向左平移4个单位长度,再向上平移4个单位长度到达点,则点的坐标是_______.
4、点A(3,4)到x轴的距离是 _____.
5、如图,的顶点都在正方形网格的格点上,点A的坐标为,将沿坐标轴翻折,则点C的对应点的坐标是______.
三、解答题(10小题,每小题5分,共计50分)
1、已知点A(1,﹣1),B(﹣1,4),C(﹣3,1).
(1)请在如图所示的平面直角坐标系中(每个小正方形的边长都为1)画出△ABC;
(2)作△ABC关于x轴对称的△DEF,其中点A,B,C的对应点分别为点D,E,F;
(3)连接CE,CF,请直接写出△CEF的面积.
2、在平面直角坐标系xOy中,直线l:x=m表示经过点(m,0),且平行于y轴的直线.给出如下定义:将点P关于x轴的对称点,称为点P的一次反射点;将点关于直线l的对称点,称为点P关于直线l的二次反射点.例如,如图,点M(3,2)的一次反射点为(3,-2),点M关于直线l:x=1的二次反射点为(-1,-2).
已知点A(-1,-1),B(-3,1),C(3,3),D(1,-1).
(1)点A的一次反射点为 ,点A关于直线:x=2的二次反射点为 ;
(2)点B是点A关于直线:x=a的二次反射点,则a的值为 ;
(3)设点A,B,C关于直线:x=t的二次反射点分别为,,,若△与△BCD无公共点,求t的取值范围.
3、如图,在平面直角坐标系中,已知的三个顶点都在网格的格点上.
(1)在图中作出关于轴对称的,并写出点的对应点的坐标;
(2)在图中作出关于轴对称的,并写出点的对应点的坐标.
4、在平面直角坐标系中,的顶点坐标分别为.
(1)关于y轴的对称图形为画出,(点A与点对应,点B与点对应,点C与点对应);
(2)连接,在的下方画出以为底的等腰直角,并直接写出点P的坐标.
5、如图,已知△ABC各顶点的坐标分别为A(-3,2),B(-4,-3),C(-1,-1).
(1)请在图中画出△ABC关于y轴对称的△A1B1C1,
(2)并写出△A1B1C1的各点坐标.
6、如图,在平面直角坐标系中有一个△ABC,顶点A(-1,3),B(2,0),C(-3,-1).
(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);点A关于x轴对称的点坐标为_______;点B关于y轴对称的点坐标为_______;
(2)若网格上的每个小正方形的边长为1,则△ABC的面积是_______.
7、如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,2).
(1)画出△ABC关于y轴对称的图形△A1B1C1;
(2)如果点D(a,b)在线段AB上,请直接写出经过(1)的变化后D的对应点D1的坐标;
(3)请计算出的面积.
8、如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(2,1),B(0,1),C(0,4).
(1)画出△ABC关于x轴对称的△A1B1C1,A、B、C的对应点分别为A1,B1,C1;
(2)画出△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2,A、B、C的对应点分别为A2,B2,C2.连接B2C2,并直接写出线段B2C2的长度.
9、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立如图所示的平面直角坐标系后,的顶点均在格点上,且坐标分别为:A(3,3)、B(-1,1)、C(4,1).依据所给信息,解决下列问题:
(1)请你画出将向右平移3个单位后得到对应的;
(2)再请你画出将沿x轴翻折后得到的;
(3)若连接、,请你直接写出四边形的面积.
10、如图,ABCDx轴,且AB=CD=3,A点坐标为(-1,1),C点坐标为(1,-1),请写出点B,点D的坐标.
-参考答案-
一、单选题
1、D
【分析】
根据位置的确定需要两个条件:方向和距离进行求解即可.
【详解】
解:A、陇海路以北只有方向,不能确定位置,故不符合题意;
B、工人路以西只有方向,不能确定位置,故不符合题意;
C、郑州市人民政府西南方向只有方向,不能确定位置,故不符合题意;
D、陇海路和工人路交叉口西北角,是两个方向的交汇处,可以确定位置,符合题意;
故选D.
【点睛】
本题主要考查了确定位置,熟知确定位置的条件是解题的关键.
2、D
【分析】
根据点A的坐标和点的坐标确定平移规律,即可求出点P(a,b)平移后的对应点的坐标.
【详解】
解:∵△A′B′O′是由△ABO平移得到的,点A的坐标为(-1,2),它的对应点A′的坐标为(3,4),
∴△ABO平移的规律是:先向右移4个单位长度,再向上平移2个单位长度,
∴△ABO内任意点P(a,b)平移后的对应点P′的坐标为(a+4,b+2).
故选:D.
【点睛】
此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律.点向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;点向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小.
3、C
【分析】
关于轴对称的两个点的坐标特点:横坐标互为相反数,纵坐标不变,根据原理直接可得答案.
【详解】
解:点P(2,5)关于y轴对称的点的坐标为:
故选:C
【点睛】
本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的坐标特点:横坐标互为相反数,纵坐标不变”是解本题的关键.
4、B
【分析】
对应点的连线段的垂直平分线的交点,即为所求.
【详解】
解:如图,点即为所求,,
故选:B.
【点睛】
本题考查坐标与图形变化旋转,解题的关键是理解对应点的连线段的垂直平分线的交点即为旋转中心.
5、D
【分析】
如图,作PE⊥x轴于E,P′F⊥x轴于F.利用全等三角形的性质解决问题即可.
【详解】
解:如图,作PE⊥x轴于E,P′F⊥x轴于F.
∵∠PEO=∠OFP′=∠POP′=90°,
∴∠POE+∠P′OF=90°,∠P′OF+∠P′=90°,
∴∠POE=∠P′,
∵OP=OP′,
∴△POE≌△OP′F(AAS),
∴OF=PE=1,P′F=OE=2,
∴P′(﹣1,-2).
故选:D.
【点睛】
本题考查旋转变换,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
6、C
【分析】
根据关于原点对称的点,横坐标与纵坐标都互为相反数求解即可.
【详解】
解:由题意,得
点P(-2,3)关于原点对称的点的坐标是(2,-3),
故选:C.
【点睛】
本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
7、B
【分析】
根据平面直角坐标系中四个象限中点的坐标特点求解即可.
【详解】
解:∵点P的坐标为(﹣3,2),
∴则点P位于第二象限.
故选:B.
【点睛】
此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.
8、A
【分析】
观察点A与点B的坐标,依据关于原点中心对称的点,横坐标与纵坐标都互为相反数可得答案.
【详解】
根据题意,易得点(-3,4)与(3,-4)的横、纵坐标互为相反数,则这两点关于原点中心对称.
故选A.
【点睛】
本题考查在平面直角坐标系中,关于原点中心对称的两点的坐标之间的关系.掌握关于原点对称的点,横坐标与纵坐标都互为相反数是解答本题的关键.
9、D
【分析】
先判断出点的横、纵坐标的符号,再根据点到轴、轴的距离即可得.
【详解】
解:点在第四象限,
点的横坐标为正数,纵坐标为负数,
点到轴的距离为1,到轴的距离为2,
点的纵坐标为,横坐标为2,
即,
故选:D.
【点睛】
本题考查了点坐标,熟练掌握各象限内的点坐标的符号规律是解题关键.
10、D
【分析】
由题意直接根据各象限内点坐标特征进行分析即可得出答案.
【详解】
∵点A(x,5)在第二象限,
∴x<0,
∴﹣x>0,
∴点B(﹣x,﹣5)在四象限.
故选:D.
【点睛】
本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
二、填空题
1、
【分析】
绕坐标原点顺时针旋转即关于原点中心对称,找到关于原点中心对称的点的坐标即可,根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.
【详解】
解:将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是
故答案为:
【点睛】
本题考查了求一个点关于原点中心对称的点的坐标,掌握关于原点中心对称的点的坐标特征是解题的关键.关于原点对称的两个点,横坐标、纵坐标分别互为相反数.
2、1
【分析】
直接利用关于y轴对称点的性质(横坐标互为相反数,纵坐标不变)得出a,b的值,进而求出答案.
【详解】
解:∵点M(,a)关于y轴的对称点是点N(b,),
∴b=-,a=,
则=1.
故答案为:1.
【点睛】
此题主要考查了关于y轴对称点的性质,得出a,b的值是解题关键.
3、 (4,-3) (-2,-6) (-2,7)
【分析】
(1)根据点向右平移2个单位即横坐标加2,纵坐标不变求解即可;
(2)根据点向下平移3个单位即横坐标不变,纵坐标减3求解即可;
(3)根据点向左平移4个单位长度,再向上平移4个单位即横坐标减4,纵坐标加4求解即可.
【详解】
解:(1)∵把点P(2,-3)向右平移2个单位长度到达点,
∴横坐标加2,纵坐标不变,
∴点的坐标是(4,-3);
(2)∵把点A(-2,-3)向下平移3个单位长度到达点B,
∴横坐标不变,纵坐标减3,
∴点B的坐标是(-2,-6);
(3)∵把点P(2,3)向左平移4个单位长度,再向上平移4个单位长度到达点,
∴横坐标减4,纵坐标加4,
∴点的坐标是(-2,7).
故答案为:(4,-3);(-2,-6);(-2,7).
【点睛】
此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律.向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小.
4、4
【分析】
根据点到x轴的距离等于纵坐标的绝对值解答即可.
【详解】
解:点A(3,4)到x轴的距离为4,
故答案为:4.
【点睛】
本题考查了点到坐标轴的距离,掌握点到x轴的距离等于纵坐标的绝对值是解题的关键.
5、或
【分析】
根据题意,分两种情况讨论:点C关于x轴翻折;点C关于y轴翻折;分别根据翻折情况坐标点的特点求解即可得.
【详解】
解:点C关于坐标轴翻折,分两种情况讨论:
点C关于x轴翻折,横坐标不变,纵坐标互为相反数可得:;
点C关于y轴翻折,纵坐标不变,横坐标互为相反数可得:;
故答案为:或.
【点睛】
题目主要考查坐标系中轴对称的点的特点,理解题意,熟练掌握轴对称点的特点是解题关键.
三、解答题
1、(1)作图见详解;(2)作图见详解;(3)的面积为2.
【分析】
(1)直接在坐标系中描点,然后依次连线即可;
(2)先确定A、B、C三点关于x轴对称的点的坐标,然后依次连接即可;
(3)根据三角形在坐标系中的位置,确定三角形的底和高,直接求面积即可.
【详解】
解:(1)如图所示,即为所求;
(2)A、B、C三点关于x轴对称的点的坐标分别为:,,,
然后描点、连线,
∴即为所求;
(3)由图可得:SΔCEF=12×2×2=2,
∴的面积为2.
【点睛】
题目主要考查在坐标系中作轴对称图形及点的坐标特点,熟练掌握轴对称图形的性质是解题关键.
2、(1)(-1,1);(5,1);(2)-2;(3)<-2或>1.
【分析】
(1)根据一次反射点和二次反射点的定义求解即可;
(2)根据二次反射点的意义求解即可;
(3)根据题意得,,,分<0和>0时△与△BCD无公共点,求出t的取值范围即可.
【详解】
解:(1)根据一次反射点的定义可知,A(-1,-1)一次反射点为(-1,1),
点A关于直线:x=2的二次反射点为(5,1)
故答案为: (-1,1);(5,1).
(2)∵A(-1,-1),B(-3,1),且点B是点A关于直线:x=a的二次反射点,
∴
解得,
故答案为: -2.
(3)由题意得,(-1,1),(-3,-1),(3,-3),点D(1,-1)在线段上.
当<0时,只需关于直线=的对称点在点B左侧即可,如图1.
∵当与点B重合时,=-2,
∴当<-2时,△与△BCD无公共点.
当>0时,只需点D关于直线x=的二次反射点在点D右侧即可,如图2,
∵当与点D重合时,=1,
∴当>1时,△与△BCD无公共点.
综上,若△与△BCD无公共点,的取值范围是<-2,或>1.
【点睛】
本题考查了轴对称性质,动点问题,新定义二次反射点的理解和运用;解题关键是对新定义二次反射点的正确理解.
3、(1)为所求,图形见详解,点B1(-5,-1);(2)为所求,图形见详解,点B2(5,1).
【分析】
(1)根据关于轴对称的,求出A1(-6,-6),B1(-5,-1),C1(-1,-6),然后在平面直角坐标系中描点,顺次连接A1B1, B1C1,C1A1即可;
(2)根据关于轴对称的,求出A2(6,6),点B2(5,1),点C2(1,6),
然后在平面直角坐标系中描点,顺次连接A2B2, B2C2,C2A2即可.
【详解】
解:(1)根据点在平面直角坐标系中的位置,△ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),
关于轴对称的,
关于x轴对称点的特征是横坐标不变,纵坐标互为相反数,
∴中点A1(-6,-6),点B1(-5,-1),点C1(-1,-6),
在平面直角坐标系中描点A1(-6,-6),B1(-5,-1),C1(-1,-6),
顺次连接A1B1, B1C1,C1A1,
则为所求,点B1(-5,-1);
(2)∵关于轴对称的,
∴点的坐标特征是横坐标互为相反数,纵坐标不变,
∵△ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),
∴中点A2(6,6),点B2(5,1),点C2(1,6),
在平面直角坐标系中描点A2(6,6),B2(5,1),C2(1,6),
顺次连接A2B2, B2C2,C2A2,
则为所求,点B2(5,1).
【点睛】
本题考查在平面直角坐标系中画称轴对称的图形,掌握画图方法,先求坐标,描点,顺次连接是解题关键.
4、(1)作图见解析;(2)作图见解析,
【分析】
(1)分别求出A,B,C关于y轴对称的点,连接即可;
(2)根据轴对称的性质计算即可;
【详解】
(1)由题可知,A,B,C关于y轴对称的点为,,,作图如下;
(2)根据题意可得:,设与y轴交于点M,则是等腰直角三角形,
∴,
∴;
【点睛】
本题主要考查了轴对称的性质应用和等腰直角三角形的性质,准确作图计算是解题的关键.
5、(1)见解析;(2)A1(3,2),B1(4,-3),C1(1,-1).
【分析】
(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可;
(2)根据所作图形可得答案.
【详解】
解:(1)如图所示,△A1B1C1即为所求作.
(2)由图可知,A1(3,2),B1(4,-3),C1(1,-1).
【点睛】
本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点.注意:关于x轴对称的点,横坐标相同,纵坐标互为相反数.
6、(1)图见解析,(-1,-3),(-2,0);(2)9
【分析】
(1)根据题意直接利用关于坐标轴对称点的性质得出各对应点位置即可;
(2)由题意利用△ABC所在矩形面积减去周围三角形面积进行计算进而得出答案.
【详解】
解:(1)如图,△A1B1C1即为所作,
点A关于x轴对称的点坐标为 (-1,-3);
点B关于y轴对称的点坐标为:(-2,0);
故答案为:(-1,-3),(-2,0);
(2)△ABC的面积是:4×5-×2×4-×3×3-×1×5=9.
故答案为:9.
【点睛】
本题主要考查轴对称变换以及求三角形面积-补全法,根据题意得出对应点位置是解题的关键.
7、(1)见解析;(2)(-a,b);(3)2
【分析】
(1)分别作出点A、B、C关于y轴的对称点,再顺次连接即可得;
(2)根据(1)中规律即可得出答案;
(3)用割补法可求△ABC的面积.
【详解】
解:(1)△A1B1C1如图所示:
(2)∵D点的坐标为(a,b),
∴D1点的坐标为(-a,b);
(3).
【点睛】
本题考查作图-轴对称变换,三角形的面积等知识,解题的关键是掌握轴对称变换的性质,学会有分割法求三角形面积.关于y轴对称点的性质:纵坐标相同,横坐标互为相反数.
8、(1)作图见解析;(2)作图见解析,
【分析】
(1)关于轴对称,即对应点横坐标不变,纵坐标互为相反数,找出坐标即可;
(2)根据旋转的性质可画出图形,即可找出的坐标,由即可得出答案.
【详解】
(1)
关于轴对称的如图所作,
,,,
,,;
(2)绕原点逆时针方向旋转得到的如图所示,
由旋转的性质得:.
【点睛】
本题考查轴对称与旋转作图,掌握轴对称的性质以及旋转的性质是解题的关键.
9、(1)见解析;(2)见解析;(3)16
【分析】
(1)利用平移的性质得出对应点位置进而得出答案;
(2)利用关于x轴对称的点的坐标找出A2、B2、C2的坐标,然后描点即可;
(3)运用割补法求解即可
【详解】
解:(1)如图,即为所作;
(2)如图,即为所作;
(3)四边形的面积==16
【点睛】
此题主要考查了轴对称变换以及平移变换和四边形面积求法,根据题意得出对应点位置是解题关键.
10、B(2,1),D(﹣2,﹣1).
【分析】
根据平行于x轴的直线上点的坐标的特点求出纵坐标,再根据AB=CD=3得出横坐标.
【详解】
解:∵AB∥CD∥x轴,A点坐标为(﹣1,1),点C(1,﹣1),
∴点B、D的纵坐标分别是1,﹣1,
∵AB=CD=3,
∴点B、D的横坐标分别是-1+3=2,1-3=-2,
∴B(2,1),D(﹣2,﹣1).
【点睛】
本题主要是考查平行于x轴的直线的特点,解题关键是明确平行于x轴的直线上点的纵坐标相同.
初中第十五章 平面直角坐标系综合与测试测试题: 这是一份初中第十五章 平面直角坐标系综合与测试测试题,共30页。试卷主要包含了平面直角坐标系中,将点A,已知点A等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时练习: 这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时练习,共29页。试卷主要包含了若点P,若平面直角坐标系中的两点A等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步训练题: 这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步训练题,共37页。试卷主要包含了平面直角坐标系中,将点A等内容,欢迎下载使用。