![精品试题沪教版七年级数学第二学期第十五章平面直角坐标系综合测评试题(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12712310/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题沪教版七年级数学第二学期第十五章平面直角坐标系综合测评试题(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12712310/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题沪教版七年级数学第二学期第十五章平面直角坐标系综合测评试题(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12712310/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学第十五章 平面直角坐标系综合与测试课时作业
展开
这是一份初中数学第十五章 平面直角坐标系综合与测试课时作业,共32页。试卷主要包含了点关于轴对称的点的坐标是,已知点A,在平面直角坐标系中,点P,平面直角坐标系中,点P,点在等内容,欢迎下载使用。
七年级数学第二学期第十五章平面直角坐标系综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、根据下列表述,能确定位置的是( )
A.光明剧院8排 B.毕节市麻园路
C.北偏东40° D.东经116.16°,北纬36.39°
2、如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,,是斜边在x轴上,斜边长分别为2,4,6,...的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为( )
A.-1008 B.-1010 C.1012 D.-1012
3、根据下列表述,能够确定具体位置的是( )
A.北偏东25°方向 B.距学校800米处
C.温州大剧院音乐厅8排 D.东经20°北纬30°
4、点关于轴对称的点的坐标是( )
A. B. C. D.
5、已知点A(x+2,x﹣3)在y轴上,则x的值为( )
A.﹣2 B.3 C.0 D.﹣3
6、在平面直角坐标系中,点A的坐标为.作点A关于x轴的对称点,得到点,再将点向左平移2个单位长度,得到点,则点所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
7、在平面直角坐标系中,点P(2,5)关于y轴对称的点的坐标为( )
A.(2,﹣5) B.(﹣2,﹣5) C.(﹣2,5) D.(﹣5,2)
8、平面直角坐标系中,点P(,)和点Q(,)关于轴对称,则的值是( )
A. B. C. D.
9、点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
10、如图为某停车场的平面示意图,若“奥迪”的坐标是(-2,-1),“奔驰”的坐标是(1,-1),则“东风标致”的坐标是( )
A.(-3,2) B.(3,2) C.(-3,-2) D.(3,-2)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在平面直角坐标系中,点P(2,3)向右平移3个单位再向下平移2个单位后的坐标是___.
2、已知点在第二象限,且离轴的距离为3,则____.
3、点P(﹣2,﹣4)关于y轴对称的点的坐标是_________.
4、在平面直角坐标系中,点A(-2,4)与点关于轴对称,则点的坐标为________.
5、在平面直角坐标系中,将点P(3,﹣1)向上平移5个单位长度到点M,则点M关于原点对称的点的坐标是 _____.
三、解答题(10小题,每小题5分,共计50分)
1、如图在平面直角坐标系中,△ABC各顶点的坐标分别为: A(4,0),B(﹣1,4),C(﹣3,1)
(1)在图中作△A′B′C′使△A′B′C′和△ABC关于x轴对称;
(2)求△ABC的面积
2、在平面直角坐标系xOy中,点M(2,t-2)与点N关于过点(0,t)且垂直于y轴的直线对称.
(1)当t =-3时,点N的坐标为 ;
(2)以MN为底边作等腰三角形MNP.
①当t =1且直线MP经过原点O时,点P坐标为 ;
②若MNP上所有点到x轴的距离都不小于a(a是正实数),则t的取值范围是 (用含a的代数式表示)
3、如图,在平面直角坐标系中,已知的三个顶点都在网格的格点上.
(1)在图中作出关于轴对称的,并写出点的对应点的坐标;
(2)在图中作出关于轴对称的,并写出点的对应点的坐标.
4、格点三角形(顶点是网格线的交点的三角形)△ABC在平面直角坐标系中的位置如图所示.
(1)A点坐标为 ;A点关于y轴对称的对称点A1坐标为 .
(2)请作出△ABC关于y轴对称的△A1B1C1;
(3)请直接写出△A1B1C1的面积.
5、如图,在平面直角坐标系中,点为坐标原点,点,点在轴的负半轴上,点,连接、,且,
(1)求的度数;
(2)点从点出发沿射线以每秒2个单位长度的速度运动,同时,点从点出发沿射线以每秒1个单位长度的速度运动,连接、,设的面积为,点运动的时间为,求用表示的代数式(直接写出的取值范围);
(3)在(2)的条件下,当点在轴的正半轴上,点在轴的负半轴上时,连接、、,,且四边形的面积为25,求的长.
6、如图1,将射线OX按逆时针方向旋转β角,得到射线OY,如果点P为射线OY上的一点,且OP=a,那么我们规定用(a,β)表示点P在平面内的位置,并记为P(a,β).例如,图2中,如果OM=8,∠XOM=110°,那么点M在平面内的位置,记为M(8,110),根据图形,解答下面的问题:
(1)如图3,如果点N在平面内的位置记为N(6,30),那么ON=________;∠XON=________.
(2)如果点A,B在平面内的位置分别记为A(5,30),B(12,120),画出图形并求出AOB的面积.
7、如图,在平面直角坐标系中,AO=CO=6,AC交y轴于点B,∠BAO=30°,CO的垂直平分线过点B交x轴于点E.
(1)求AE的长;
(2)动点N从E出发,以1个单位/秒的速度沿射线EC方向运动,过N作x轴的平行线交直线OC于G,交直线BE于P,设GP的长为d,运动时间为t秒,请用含量t的式子表示d,并直接写出t的取值范围;
(3)在(2)的条件下,动点M从A以1个单位/秒的速度沿射线AE运动,且点M与点N同时出发,MN与射线OC相交于点K,是否存在某一运动时间t,使得=2,若存在,请求出t值;若不存在,请说明理由.
8、多多和爸爸、妈妈周末到白银市金鱼公园动物园游玩,回到家后,她利用平面直角坐标系画出了白银市金鱼公园动物园的景区地图,如图所示.可是她忘记了在图中标出原点、x轴和y轴,只知道东北虎的坐标为.请你帮她画出平面直角坐标系,并写出其他各景点的坐标.
9、如图,在平面直角坐标系中,已知点A(1,4),B(4,4),C(2,1).
(1)请在图中画出ABC;
(2)将ABC向左平移5个单位,再沿x轴翻折得到A1B1C1,请在图中画出A1B1C1;
(3)若ABC 内有一点P(a,b),则点P经上述平移、翻折后得到的点P1的坐是 .
10、如图
(1)敌方战舰C和我方战舰2号在我方潜艇什么方向?
(2)如何确定敌方战舰B的位置?
-参考答案-
一、单选题
1、D
【分析】
根据位置的确定需要两个条件对各选项分析判断即可得解.
【详解】
解:.光明剧院8排,没有明确具体位置,故此选项不合题意;
.毕节市麻园路,不能确定位置,故此选项不合题意;
.北偏东,没有明确具体位置,故此选项不合题意;
.东经,北纬,能确具体位置,故此选项符合题意;
故选:D.
【点睛】
本题考查了坐标确定位置,解题的关键是理解位置的确定需要两个条件.
2、C
【分析】
首先确定角码的变化规律,利用规律确定答案即可.
【详解】
解:∵各三角形都是等腰直角三角形,
∴直角顶点的纵坐标的长度为斜边的一半,
A3(0,0),A7(2,0),A11(4,0)…,
∵2021÷4=505余1,
∴点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)÷2=1012,
∴A2021的坐标为(1012,0).
故选:C
【点睛】
本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键.
3、D
【分析】
根据确定位置的方法即可判断答案.
【详解】
A. 北偏东25°方向不能确定具体位置,缺少距离,故此选项错误;
B. 距学校800米处不能确定具体位置,缺少方向,故此选项错误;
C. 温州大剧院音乐厅8排不能确定具体位置,应具体到8排几号,故此选项错误;
D. 东经20°北纬30°可以确定一点的位置,故此选项正确.
故选:D.
【点睛】
本题考查确定位置的方法,掌握确定位置要具体到一点是解题的关键.
4、B
【分析】
根据两个关于x轴成轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,即可得答案.
【详解】
解:∵点A的坐标为(-2,-3),
∴点A(-2,-3)关于x轴对称的点的坐标是(-2,3).
故选:B.
【点睛】
本题是对坐标系中对称点的考查,熟记两个关于x轴成轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,是解题关键.
5、A
【分析】
根据y轴上点的横坐标为0列方程求解即可.
【详解】
解:∵点A(x+2,x﹣3)在y轴上,
∴x+2=0,
解得x=-2.
故选:A.
【点睛】
本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.
6、C
【分析】
根据题意结合轴对称的性质可求出点的坐标.再根据平移的性质可求出点的坐标,即可知其所在象限.
【详解】
∵点A的坐标为(1,3),点是点A关于x轴的对称点,
∴点的坐标为(1,-3).
∵点是将点向左平移2个单位长度得到的点,
∴点的坐标为(-1,-3),
∴点所在的象限是第三象限.
故选C.
【点睛】
本题考查轴对称的性质,平移中点的坐标的变化以及判断点所在的象限.根据题意求出点的坐标是解答本题的关键.
7、C
【分析】
关于轴对称的两个点的坐标特点:横坐标互为相反数,纵坐标不变,根据原理直接可得答案.
【详解】
解:点P(2,5)关于y轴对称的点的坐标为:
故选:C
【点睛】
本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的坐标特点:横坐标互为相反数,纵坐标不变”是解本题的关键.
8、A
【分析】
根据题意直接利用关于x轴对称点的性质得出a,b的值,进而代入计即可得出答案.
【详解】
解:∵点P(,)和点Q(,)关于轴对称,
∴,
∴.
故选:A.
【点睛】
本题考查关于x轴的对称点的坐标特点,注意掌握关于x轴的对称点的坐标特点为横坐标不变,纵坐标互为相反数.
9、C
【分析】
根据各象限内点的坐标特征解答.
【详解】
解:点的横坐标小于0,纵坐标小于0,点所在的象限是第三象限.
故选:C.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).
10、D
【分析】
由题意,先建立平面直角坐标系,确定原点的位置,即可得到“东风标致”的坐标.
【详解】
解:∵“奥迪”的坐标是(2,1),“奔驰”的坐标是(1,1),
∴建立平面直角坐标系,如图所示:
∴“东风标致”的坐标是(3,2);
故选:D.
【点睛】
本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.
二、填空题
1、 (5,1)
【分析】
利用坐标点平移的性质:左右平移,对横坐标进行加减,上下平移对纵坐标进行加减,解决该题即可.
【详解】
解:点P(2,3)向右平移3个单位再向下平移2个单位,即横坐标加3,纵坐标减2,
所以平移后的点坐标为(5,1).
故答案为:(5,1).
【点睛】
本题主要是考查了点坐标的平移,熟练掌握点坐标的上下左右平移与横纵坐标的关系,是求解该类问题的关键.
2、8
【分析】
根据题意可得,求出的值,代入计算即可.
【详解】
解:点在第二象限,且离轴的距离为3,
,
解得,
.
故答案为:8.
【点睛】
本题考查了平面直角坐标系-点到坐标轴的距离,绝对值的意义,跟具体题意求出的值是解本题的关键.
3、(2,﹣4)
【分析】
根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.
【详解】
解:点P(-2,-4)关于y轴对称的点的坐标是(2,-4).
故答案为:(2,-4).
【点睛】
本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.
4、.
【分析】
根据“关于轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.
【详解】
解:点关于轴对称点的坐标为.
故答案为:.
【点睛】
本题考查了关于轴、轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
5、
【分析】
根据点的平移规律,可得平移后的点,根据关于原点对称的点的横、纵坐标都互为相反数,可得答案.
【详解】
将点向上平移5个单位长度得到点,
点M关于原点对称的点的坐标是,
故答案为:.
【点睛】
本题考查了平移与坐标变换,利用关于原点对称的点的横、纵坐标都互为相反数是解题关键.
三、解答题
1、(1)见解析;(2)11.5
【分析】
(1)直接利用关于x轴对称点的性质,进而得出答案;
(2)利用△ABC所在矩形面积减去周围三角形面积进而得出答案.
【详解】
解:(1)如图所示
(2)
【点睛】
此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.
2、(1)(2,-1);(2)①(-2,1);②t≥a+2或t≤-a-2
【分析】
(1)先求出对称轴,再表示N点坐标即可;
(2)①以MN为底边作等腰三角形MNP,则点P在直线y=t=1上,直线OM与y=1的交点即为所求;
②表示出M、N、P的坐标,比较纵坐标的绝对值即可.
【详解】
(1)过点(0,t)且垂直于y轴的直线解析式为y=t
∵点M(2,t-2)与点N关于过点(0,t)且垂直于y轴的直线对称
∴可以设N点坐标为(2,n),且MN中点在y=t上
∴,记得
∴点N坐标为
∴当t =-3时,点N的坐标为
(2)①∵以MN为底边作等腰三角形MNP,且点M(2,t-2)与点N直线y=t对称.
∴点P在直线y=t上,且P是直线OM与y=1的交点
当t =1时M(2,-1),N(2,3)
∴OM直线解析式为
∴当y=1时,
∴P点坐标为(-2,1)
②由题意得,点M坐标为(2,t-2),点N坐标为,点P坐标为
∵,MNP上所有点到x轴的距离都不小于a
∴只需要或者
当M、N、P都在x轴上方时,,此时,解得t≥a+2
当MNP上与x轴有交点时,此时MNP上所有点到x轴的距离可以为0,不符合要求;
当M、N、P都在x轴下方时,,此时,解得t≤-a-2
综上t≥a+2或t≤-a-2
【点睛】
本题考查坐标与轴对称、等腰三角形的性质等知识,解题的关键是利用轴对称表示坐标,属于中考常考题型.
3、(1)为所求,图形见详解,点B1(-5,-1);(2)为所求,图形见详解,点B2(5,1).
【分析】
(1)根据关于轴对称的,求出A1(-6,-6),B1(-5,-1),C1(-1,-6),然后在平面直角坐标系中描点,顺次连接A1B1, B1C1,C1A1即可;
(2)根据关于轴对称的,求出A2(6,6),点B2(5,1),点C2(1,6),
然后在平面直角坐标系中描点,顺次连接A2B2, B2C2,C2A2即可.
【详解】
解:(1)根据点在平面直角坐标系中的位置,△ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),
关于轴对称的,
关于x轴对称点的特征是横坐标不变,纵坐标互为相反数,
∴中点A1(-6,-6),点B1(-5,-1),点C1(-1,-6),
在平面直角坐标系中描点A1(-6,-6),B1(-5,-1),C1(-1,-6),
顺次连接A1B1, B1C1,C1A1,
则为所求,点B1(-5,-1);
(2)∵关于轴对称的,
∴点的坐标特征是横坐标互为相反数,纵坐标不变,
∵△ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),
∴中点A2(6,6),点B2(5,1),点C2(1,6),
在平面直角坐标系中描点A2(6,6),B2(5,1),C2(1,6),
顺次连接A2B2, B2C2,C2A2,
则为所求,点B2(5,1).
【点睛】
本题考查在平面直角坐标系中画称轴对称的图形,掌握画图方法,先求坐标,描点,顺次连接是解题关键.
4、(1)(-2,3);(2,3);(2)见解析;(3)
【分析】
(1)根据平面直角坐标系可得A点坐标,再根据关于y轴对称的点的坐标特点可得A1坐标;
(2)首先确定A、B、C三点坐标,再连接即可;
(3)根据割补求解可得答案.
【详解】
解:(1)A点坐标为 (-2,3);
A点关于y轴对称的对称点A1坐标为 (2,3).
故答案为:(-2,3);(2,3);
(2)如图所示△A1B1C1;
(3)△A1B1C1的面积:2×2-×1×2-×1×2-×1×1=.
【点睛】
本题主要考查了作图-轴对称变换,关键是掌握图形都是由点组成的,作轴对称图形,就是寻找特殊点的对称点.注意:关于y轴对称的点,纵坐标相同,横坐标互为相反数.
5、(1);(2);(3)5
【分析】
(1)根据非负数的性质求得的值,进而求得,即可证明是等腰直角三角形,即可求得的度数;
(2)分点在轴正半轴,原点,轴负半轴三种情况,根据点的运动表示出线段长度,进而根据三角形的面积公式即可列出代数式;
(3)过点作,连接,根据四边形的面积求得,进而求得,由,设,,则,证明,进而可得,,进一步导角可得,根据等角对等边即可求得
【详解】
(1)
是等腰直角三角形,
(2)①当点在轴正半轴时,如图,
,,
,
②当点在原点时,都在轴上,不能构成三角形,则时,不存在
③当点在轴负半轴时,如图,
,,
,
综上所述:
(3)如图,过点作,连接
,
设,,则,
是等腰直角三角形
在和中
,
是等腰直角三角形
中,
,
又
【点睛】
本题考查了非负数的性质,等腰三角形的性质与判定,全等三角形的性质与判定,正确的添加辅助线是解题的关键.
6、(1)6,30°;(2)见解析,30
【分析】
(1)由题意得第一个坐标表示此点距离原点的距离,第二个坐标表示此点与原点的连线与x轴所夹的角的度数;
(2)根据相应的度数判断出△AOB的形状,再利用三角形的面积公式求解即可.
【详解】
(1)根据点N在平面内的位置N(6,30)可知,ON=6,∠XON=30°.
答案:6,30°
(2)如图所示:
∵A(5,30),B(12,120),
∴∠BOX=120°,∠AOX=30°,
∴∠AOB=90°,
∵OA=5,OB=12,
∴△AOB的面积为OA·OB=30.
【点睛】
本题考查了坐标确定位置及旋转的性质,解决本题的关键是理解所给的新坐标的含义.
7、(1)12;(2);(3)当或时,使得.
【分析】
(1)由OA=OC=6,∠BAO=30°,得到∠OAC=∠OCA=30°,则∠COE=∠OAC+∠OCA=60°,再由BE是线段OC的垂直平分线平分线,得到OE=CE,则△COE是等边三角形,由此即可得到答案;
(2)分三种情况:当直线PN在H点下方时(包括H点),当直线PN在H点上方,且在C点下方时(包括C点),当直线PN在C点上方时,三种情况讨论求解即可;
(3)分N在EC上和EC的延长线上两种情况,构造全等三角形求解即可.
【详解】
解:(1)∵OA=OC=6,∠BAO=30°,
∴∠OAC=∠OCA=30°,
∴∠COE=∠OAC+∠OCA=60°,
∵BE是线段OC的垂直平分线平分线,
∴OE=CE,
∴△COE是等边三角形,
∴OE=OC=AO=6,
∴AE=AO+OE=12;
(2)如图1所示,过点C作CK⊥x轴于K,设OC与BE的交点为H,当直线PN在H点下方时(包括H点),
∵BE是线段OC的垂直平分线,
∴∠CEP=∠OEP,
∵PN∥OE,
∴∠NPE=∠OEP,∠CGN=∠COE=60°,∠CNG=∠CEO=60°,
∴∠NPE=∠NEP,△CGN是等边三角形,
∴NP=NE=t,NG=CN=CE-NE=6-t,
∴PG=d=NG-NP=6-t-t=6-2t,
∵当直线PN刚好经过H点时,此时CH=CN=3,
即当t=3时,直线PN经过H点,
∴当直线PN在H点下方或经过H点时,d=6-2t(0≤t≤3);
如图2所示,当直线PN在H点上方,且在C点下方时(包括C点),
同理可证NP=NE=t,NG=CN=CE-CN=6-t,
∴PG=d=NP-NG=t-(6-t)=2t-6(3<t≤6);
如图3所示,当直线PN在C点上方时
同理可证NP=NE=t,NG=CN=EN-CE=t-6,
∴PG=d=NP+NG=t+t-6=2t-6(t>6),
∴综上所述, ;
(3)如图3-1所示,当N在CE上时,过点N作NR∥x轴交OC于R,
同(2)可证△CRN是等边三角形,
∴RN=CN=CR,
∵M、N运动的速度相同,
∴AM=NE,
又∵AO=EC,
∴MO=NR,
∵NR∥MO,
∴∠RNK=∠OMK,∠NRK=∠MOK,
∴△MOK≌△NRK(ASA),
∴OK=RK,OM=RN,
∵,
∴,
∵,
∴,即,
解得;
如图3-2所示,当C在EC的延长线上时,
同理可证,,
∵,
解得,
∴综上所述,当或时,使得.
【点睛】
本题主要考查了等边三角形的性质与判定,等腰三角形的性质与判定,平行线的性质,坐标与图形,三角形外角的性质,全等三角形的性质与判定,解题的关键在于能够利用数形结合的思想进行求解.
8、两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5)
【分析】
先利用东北虎的坐标找到坐标原点,然后以坐标原点建系,进而找出其他景点的坐标.
【详解】
解:由东北虎的坐标可知:坐标原点即为南门,以南门为坐标原点建系,如下图所示:
故:两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5).
【点睛】
本题主要是考查了写出直角坐标系中的点的坐标,解题的关键通过已知条件,找到坐标原点,进而才能求出其他点的坐标.
9、(1)见解析;(2)见解析;(3)(a-5,-b)
【分析】
(1)结合直角坐标系,可找到三点的位置,顺次连接即可得出△ABC.
(2)将各点分别向左平移5个单位长度,再作出关于x轴的对称点,顺次连接即可得到A1B1C1;
(3)根据点的坐标平移规律可得结论.
【详解】
解:(1)如图,ABC即为所画.
(2)如图,A1B1C1即为所画.
(3)点P(a,b)向左平移5个单位后的坐标为(a-5,b),关于x轴对称手点的坐标为(a-5,-b).
故答案为:(a-5,-b)
【点睛】
此题考查了平移作图、轴对称变换以及直角坐标系的知识,解答本题的关键是掌握平移和轴对称的特点,找到各点在直角坐标系的位置.
10、(1)敌方战舰C和我方战舰2号在我方潜艇的正东方;(2)要确定敌方战舰B的位置,需要敌方战舰B与我方潜艇的方向和距离两个数据.
【分析】
(1)根据图中的位置与方向即可确定.
(2)要确定每艘战舰的位置,需要知道每艘战舰分别在什么方向和与我方潜艇的距离是多少.
【详解】
(1)由图像可知,敌方战舰C和我方战舰2号在我方潜艇正东方.
(2)仅知道在我方潜艇北偏东40°方向有小岛,而要确定敌方战舰B的位置,还需要敌方战舰B与我方潜艇的方向和距离两个数据.
【点睛】
本题考查了方向角的表示,方向角:指正北或指正南方向线与目标方向线所成的小于的角叫做方向角.
相关试卷
这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后测评,共26页。试卷主要包含了点A的坐标为,则点A在,在平面直角坐标系中,点P,点P在第二象限内,P点到x,已知点A等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试达标测试,共28页。试卷主要包含了平面直角坐标系中,点P,在平面直角坐标系中,点,已知点在一,在平面直角坐标系中,点P等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试随堂练习题,共25页。试卷主要包含了在平面直角坐标系中,点P等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)