开学活动
搜索
    上传资料 赚现金

    2021-2022学年沪教版七年级数学第二学期第十五章平面直角坐标系章节测试试卷(含答案详解)

    2021-2022学年沪教版七年级数学第二学期第十五章平面直角坐标系章节测试试卷(含答案详解)第1页
    2021-2022学年沪教版七年级数学第二学期第十五章平面直角坐标系章节测试试卷(含答案详解)第2页
    2021-2022学年沪教版七年级数学第二学期第十五章平面直角坐标系章节测试试卷(含答案详解)第3页
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试当堂检测题

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试当堂检测题,共32页。试卷主要包含了点M,在平面直角坐标系中,点P,已知A,已知点A等内容,欢迎下载使用。
    七年级数学第二学期第十五章平面直角坐标系章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在坐标系中用手盖住一点,若点轴的距离为2,到轴的距离为6,则点的坐标是(    A. B. C. D.2、若平面直角坐标系中的两点Aa,3),B(1,b)关于y轴对称,则ab的值是(  A.2 B.-2 C.4 D.-43、在平面直角坐标系中,点在(    A.轴正半轴上 B.轴负半轴上C.轴正半轴上 D.轴负半轴上4、点M(3,2)关于y轴的对称点的坐标为(    A.(﹣3,2) B.(3,﹣2) C.(﹣3,﹣2) D.(1,2)5、在平面直角坐标系中,点P(2,5)关于y轴对称的点的坐标为(  )A.(2,﹣5) B.(﹣2,﹣5) C.(﹣2,5) D.(﹣5,2)6、已知A2,5),若Bx轴上的一动点,则AB两点间的距离的最小值为(    A.2 B.3 C.3.5 D.57、平面直角坐标系内与点P关于原点对称的点的坐标是(     A. B. C. D.8、如图,在平面直角坐标系中,已知“蝴蝶”上有两点,将该“蝴蝶”经过平移后点的对应点为,则点的对应点的坐标为(    A. B. C. D.9、已知点Ax,5)在第二象限,则点B(﹣x,﹣5)在(    A.第一象限 B.第二象限 C.第三象限 D.第四象限10、已知点Pm+3,2m+4)在x轴上,那么点P的坐标为(  )A.(-1,0) B.(1,0) C.(-2,0) D.(2,0)第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、已知点P(3,1)关于y轴的对称点Q的坐标为 _____.2、在直角坐标系中,已知点P(a-2,2a+7),点Q(2,5),若直线PQy轴,则线段PQ的长为_____.3、如图,已知点A(2,0),B(0,4),C(2,4),若在所给的网格中存在一点D,使得CDAB垂直且相等.(1)直接写出点D的坐标______;(2)将直线AB绕某一点旋转一定角度,使其与线段CD重合,则这个旋转中心的坐标为______.4、在平面直角坐标系中,将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是___________.5、如图,在平面直角坐标系中,等腰直角三角形OAB,∠A=90°,点O为坐标原点,点Bx轴上,点A的坐标是(1,1).若将△OAB绕点O顺时针方向依次旋转45°后得到△OA1B1,△OA2B2,△OA3B3,…,可得A1,0),A2(1,﹣1),A3(0,﹣),…则A2021的坐标是______.三、解答题(10小题,每小题5分,共计50分)1、如图,在直角坐标系中按要求作图,所画图形的顶点必须与每个小正方形的顶点重合.(1)画出一个面积等于9的等腰直角三角形ABC,使△ABC的三个顶点在坐标轴上,且△ABC关于y轴对称,其中点A的坐标为(0,3);(点B在点C的左侧)(2)将△ABC向下平移3个单位,再向右平移1个单位得到△A1B1C1(点ABC的对应点分别为点A1B1C1),画出△A1B1C1,并直接写出A1C的长.2、如图,在平面直角坐标系中,点为坐标原点,点,点轴的负半轴上,点,连接,且(1)求的度数;(2)点点出发沿射线以每秒2个单位长度的速度运动,同时,点点出发沿射线以每秒1个单位长度的速度运动,连接,设的面积为,点运动的时间为,求用表示的代数式(直接写出的取值范围);(3)在(2)的条件下,当点轴的正半轴上,点轴的负半轴上时,连接,且四边形的面积为25,求的长.3、如图,在平面直角坐标系中,直角的三个顶点分别是(1)将以点为旋转中心顺时针旋转,画出旋转后对应的并写出各个顶点坐标;(2)分别连结后,求四边形的面积.4、如图1,A(﹣2,6),C(6,2),ABy轴于点BCDx轴于点D(1)求证:△AOB≌△COD(2)如图2,连接ACBD交于点P,求证:点PAC中点;(3)如图3,点E为第一象限内一点,点Fy轴正半轴上一点,连接AFEFEFCEEFCE,点GAF中点.连接EGEO,求证:∠OEG=45°.5、如图,在平面直角坐标系中,三个顶点的坐标为(1)在图中作出关于轴的对称图形(2)请直接写出点的坐标___________;(3)在轴上画出一点使的值最小.6、如图,在平面直角坐标系中,已知的三个顶点的坐标分别为(1)画出将关于点对称的图形(2)写出点的坐标.7、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立如图所示的平面直角坐标系后,的顶点均在格点上,且坐标分别为:A(3,3)、B(-1,1)、C(4,1).依据所给信息,解决下列问题:(1)请你画出将向右平移3个单位后得到对应的(2)再请你画出将沿x轴翻折后得到的(3)若连接,请你直接写出四边形的面积.8、如图,△ABC顶点的坐标分别为A(1,﹣1),B(4,﹣1),C(3,﹣4).将△ABC绕点A逆时针旋转90°后,得到△AB1C1.在所给的直角坐标系中画出旋转后的△AB1C1,并直接写出点B1C1的坐标:B1              );C1              ).9、如图所示的方格纸中,每个小方格的边长都是,点(1)作关于轴对称的(2)通过作图在轴上找出点,使最小,并直接写出点的坐标.10、如图,平面直角坐标系中ABC的三个顶点分别是A(-4,3),B(-2,4),C(-1,1).(1)将ABC绕点O逆时针旋转90°,画出旋转后的A1B1C1(2)作出ABC关于点O的中心对称图形A2B2C2(3)如果ABC内有一点P(ab),请直接写出变换后的图形中对应点P1P2的坐标. -参考答案-一、单选题1、C【分析】首先根据P点在第四象限,可以确定P点横纵坐标的符号,再由P到坐标轴的距离即可确定P点坐标.【详解】解:∵P点在第四象限,P点横坐标大于0,纵坐标小于0,P点到x轴的距离为2,到y轴的距离为6,P点的坐标为(6,-2),故选C.【点睛】本题主要考查了点所在的象限的坐标特征,点到坐标轴的距离,解题的关键在于能够熟练掌握第四象限点的坐标特征.2、A【分析】直接利用关于y轴对称点的性质,横坐标互为相反数,纵坐标相同,进而得出答案.【详解】解:依题意可得a=-1,b=3ab=2故选A【点睛】此题主要考查了关于y轴对称点的性质,正确掌握横纵坐标的符号关系是解题关键.3、B【分析】依据坐标轴上的点的坐标特征即可求解.【详解】解:∵点),纵坐标为∴点)在x轴负半轴上故选:B【点睛】本题考查了点的坐标:坐标平面内的点与有序实数对是一一对应的关系;解题时注意:x轴上点的纵坐标为y轴上点的横坐标为4、A【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】解:点(3,2)关于y轴的对称点的坐标是(-3,2).故选:A.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.5、C【分析】关于轴对称的两个点的坐标特点:横坐标互为相反数,纵坐标不变,根据原理直接可得答案.【详解】解:点P(2,5)关于y轴对称的点的坐标为: 故选:C【点睛】本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的坐标特点:横坐标互为相反数,纵坐标不变”是解本题的关键.6、D【分析】ABx轴时,AB距离最小,最小值即为点A纵坐标的绝对值,据此可得.【详解】解:∵A(﹣2,5),且点Bx轴上的一点,∵当ABx轴时,AB距离最小,即B点(-2,0)AB两点间的距离的最小值5.故选:D.【点睛】本题考查了直线外一点与直线上各点连接的所有线段中,垂线段最短;直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.7、C【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数求解即可.【详解】解:由题意,得P(-2,3)关于原点对称的点的坐标是(2,-3),故选:C.【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.8、D【分析】先根据与点对应,求出平移规律,再利用平移特征求出点B′坐标即可【详解】解:∵与点对应,∴平移1-3=-2,3-7=-4,先向下平移4个单位,再向左平移2个单位,∵点B(7,7),∴点B′(7-2,7-4)即如图所示 故选:D.【点睛】本题考查图形与坐标,点的平移特征,掌握点的平移特征是解题关键.9、D【分析】由题意直接根据各象限内点坐标特征进行分析即可得出答案.【详解】∵点Ax,5)在第二象限,x<0,∴﹣x>0,∴点B(﹣x,﹣5)在四象限.故选:D.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10、B【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.【详解】解:∵点Pm+3,2m+4)在x轴上,∴2m+4=0,解得:m=-2,m+3=-2+3=1,∴点P的坐标为(1,0).故选:B【点睛】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.二、填空题1、(﹣3,1)【分析】点关于y轴的对称点坐标,横坐标为相反数,纵坐标不变;可以得到对称点Q的坐标.【详解】解:点P(3,1)关于y轴的对称点Q的坐标为(﹣3,1).故答案为:(﹣3,1).【点睛】本题考察坐标系中点的对称.解题的关键在于明确点在对称时坐标的变化形式.2、10【分析】直线PQy轴,则PQ两点横坐标相等,有a-2=2,得a=4,则P点坐标为(2,15),PQ的长为=10.【详解】∵直线PQya-2=2a=4P点坐标为(2,15)PQ==10.故答案为10.【点睛】本题考查了平面直角坐标系,平面直角坐标系中两点之间的线段与x轴平行,两点之间距离为横坐标差的绝对值,两点之间的线段与y轴平行,两点之间距离为纵坐标差的绝对值.3、    【分析】(1)观察坐标系即可得点D坐标;(2)对应点连线段的垂直平分线的交点即为旋转中心.【详解】解:(1)观察图象可知,点D的坐标为(6,6),故答案为:(6,6);(2)当点AC对应,点BD对应时,如图:此时旋转中心P的坐标为(4,2);当点AD对应,点BC对应时,如图:此时旋转中心P的坐标为(1,5);故答案为:(4,2)或(1,5).【点睛】本题考查坐标与图形变化−旋转,解题的关键是理解对应点连线段的垂直平分线的交点即为旋转中心.4、【分析】绕坐标原点顺时针旋转即关于原点中心对称,找到关于原点中心对称的点的坐标即可,根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.【详解】解:将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是故答案为:【点睛】本题考查了求一个点关于原点中心对称的点的坐标,掌握关于原点中心对称的点的坐标特征是解题的关键.关于原点对称的两个点,横坐标、纵坐标分别互为相反数.5、【分析】根据题意得:A1,0),A2(1,﹣1),A3(0,﹣), ,…,由此发现,旋转8次一个循环,再由 ,即可求解.【详解】解:根据题意得:A1,0),A2(1,﹣1),A3(0,﹣), ,…,由此发现,旋转8次一个循环,A2021的坐标是故答案为:【点睛】本题主要考查了图形的旋转,明确题意,准确得到规律是解题的关键.三、解答题1、(1)见解析;(2)画图见解析,A1C的长为4.【详解】解:(1)如图,△ABC即为所求.AO=BO=CO=3,且AOBC∴∠BAO=∠CAO=45°,△ABC的面积=BCAO=9,∴∠BAC=90°,且△ABC关于y轴对称;(2)如图,△A1B1C1即为所求.如图,A1C的长为4.【点睛】本题考查了根据平移变换作图以及等腰直角三角形的判定和性质,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.2、(1);(2);(3)5【分析】(1)根据非负数的性质求得的值,进而求得,即可证明是等腰直角三角形,即可求得的度数;(2)分点在轴正半轴,原点,轴负半轴三种情况,根据点的运动表示出线段长度,进而根据三角形的面积公式即可列出代数式;(3)过点,连接,根据四边形的面积求得,进而求得,由,设,则,证明,进而可得,,进一步导角可得,根据等角对等边即可求得【详解】(1)是等腰直角三角形,(2)①当点在轴正半轴时,如图,②当点在原点时,都在轴上,不能构成三角形,则时,不存在③当点在轴负半轴时,如图, 综上所述:(3)如图,过点,连接,则 是等腰直角三角形是等腰直角三角形中,【点睛】本题考查了非负数的性质,等腰三角形的性质与判定,全等三角形的性质与判定,正确的添加辅助线是解题的关键.3、(1)图见解析,;(2)9【分析】利用网格特点和旋转的性质画出的对应点,从而得到利用两个梯形的面积和减去一个三角形的面积计算四边形的面积.【详解】解:如图,为所作,各个顶点坐标为如图,四边形的面积【点睛】本题考查了作图旋转变换,根据旋转的性质画出转后对应的是解决问题的关键.4、(1)见解析;(2)见解析;(3)见解析【分析】(1)根据即可证明(2)过点轴,交于点,得出,由平行线的性质得,由轴得,由,故可得,从而得出,推出,根据证明,得出即可得证;(3)延长,使,连接,延长于点,根据证明,得出,故,由平行线的性质得出,进而推出,根据证明,故,即可证明【详解】(1)轴于点轴于点(2)如图2,过点轴,交于点轴,中,,即点中点;(3)如图3,延长,使,连接,延长于点,即【点睛】本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键.5、(1)见解析;(2);(3)见解析【分析】(1)根据题意得:点关于轴的对称的的对应点分别为,再顺次连接,即可求解;(2)根据关于轴的对称图形,即可求解;(3)作点 关于 轴的对称点 ,连接 轴于点 ,根据点 关于轴对称,可得,即可求解.【详解】解:根据题意得:点关于轴的对称的的对应点分别为,画出图形,如图所示:(2)点的坐标为(3)如图,作点关于 轴的对称点 ,连接 轴于点 ,则点即为所求,∵点 关于轴对称,即当点 三点共线时,的值最小.【点睛】本题主要考查了坐标与图形,图形变换——轴对称,线段最短问题,熟练掌握若两点关于y轴对称,则横坐标互为相反数,纵坐标不变;若两点关于x轴对称,则横坐标不变,纵坐标互为相反数;两点间线段最短是解题的关键.6、(1)见解析;(2)【分析】(1)直接利用关于点O对称的性质得出对应点位置,顺次连接各个对应点,即可;(2)根据对应点位置直接写出坐标,即可.【详解】解:(1)如图所示,(2)【点睛】本题考查了利用中心对称变换在坐标系中作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.7、(1)见解析;(2)见解析;(3)16【分析】(1)利用平移的性质得出对应点位置进而得出答案;(2)利用关于x轴对称的点的坐标找出A2B2C2的坐标,然后描点即可;(3)运用割补法求解即可【详解】解:(1)如图,即为所作;(2)如图,即为所作;(3)四边形的面积==16【点睛】此题主要考查了轴对称变换以及平移变换和四边形面积求法,根据题意得出对应点位置是解题关键.8、画图见解析;B1(1,2);C1(4,1).【分析】图形绕点A逆时针旋转90°,将ABAC逆时针旋转90°,得到,连接, 利用网格特点和旋转的性质得出点B1C1的坐标,从而得到△AB1C1【详解】如图所示,△AB1C1为所作,B1点的坐标为(1,2),C1点的坐标为(4,1).故答案为(1,2),(4,1).【点睛】本题考察了绕某点画旋转图形以及求点坐标,首先找到旋转的点,根据旋转角度和网格特征,即可得到对应坐标点.9、(1)见解析;(2)见解析,点P的坐标为(−3,0)       【分析】(1)先分别作出点ABC关于y轴的对称点,然后再顺次连接可得;(2)作点A关于x轴的对称点A″,再连接A″Cx轴于点P,再确定点P的坐标即可.【详解】解:(1)如图所示:即为所求. (2)作点A关于x轴的对称点A′′,连结A′′C,交x轴于点P,点P即为所求,点P的坐标为(−3,0)    【点睛】本题主要考查作图﹣轴对称变换,熟练掌握轴对称变换的定义和性质及最短路径问题是解答本题的关键.10、(1)见解析;(2)见解析;(3)【分析】(1)找到绕点O逆时针旋转90°的对应点,顺次连接,则即为所求;(2)找到关于点O的中心对称的对应点,顺次连接,则即为所求;(3)根据A(-4,3),B(-2,4),C(-1,1)经过旋转变换得到的,即横纵坐标的绝对值交换,且在第三象限,都取负号,即可求得,根据中心对称,横纵坐标都取相反数即可求得【详解】(1)如图所示,找到绕点O逆时针旋转90°的对应点,顺次连接,则即为所求;(2)如图所示,找到关于点O的中心对称的对应点,顺次连接,则即为所求;(3)【点睛】本题考查了求关于原点中心对称的点的坐标,绕原点旋转90度的点的坐标,画旋转图形,画中心对称图形,图形与坐标,掌握中心对称与旋转的性质是解题的关键. 

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试一课一练:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试一课一练,共27页。试卷主要包含了在平面直角坐标系中,点,点在,平面直角坐标系内一点P,点A的坐标为,则点A在,点P的坐标为等内容,欢迎下载使用。

    2021学年第十五章 平面直角坐标系综合与测试课堂检测:

    这是一份2021学年第十五章 平面直角坐标系综合与测试课堂检测,共32页。试卷主要包含了一只跳蚤在第一象限及x轴等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试精练:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试精练,共31页。试卷主要包含了在平面直角坐标系中,点,点P关于原点O的对称点的坐标是,在平面直角坐标系中,点P,若平面直角坐标系中的两点A等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map