终身会员
搜索
    上传资料 赚现金

    2021-2022学年度强化训练沪教版七年级数学第二学期第十五章平面直角坐标系专项训练试卷(含答案详解)

    立即下载
    加入资料篮
    2021-2022学年度强化训练沪教版七年级数学第二学期第十五章平面直角坐标系专项训练试卷(含答案详解)第1页
    2021-2022学年度强化训练沪教版七年级数学第二学期第十五章平面直角坐标系专项训练试卷(含答案详解)第2页
    2021-2022学年度强化训练沪教版七年级数学第二学期第十五章平面直角坐标系专项训练试卷(含答案详解)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年第十五章 平面直角坐标系综合与测试测试题

    展开

    这是一份2021学年第十五章 平面直角坐标系综合与测试测试题,共30页。试卷主要包含了已知A,已知点A,在平面直角坐标系中,点P等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、在平面直角坐标系中,点关于轴的对称点的坐标是( )
    A.B.C.D.
    2、在△ABC中,AB=AC,点B,点C在直角坐标系中的坐标分别是(2,0),(﹣2,0),则点A的坐标可能是( )
    A.(0,2)B.(0,0)C.(2,﹣2)D.(﹣2,2)
    3、已知点关于x轴的对称点与点关于y轴的对称点重合,则( )
    A.5B.1C.D.
    4、已知A(3,﹣2),B(1,0),把线段AB平移至线段CD,其中点A、B分别对应点C、D,若C(5,x),D(y,0),则x+y的值是( )
    A.﹣1B.0C.1D.2
    5、点M(2,4)先向左平移3个单位长度,再向上平移2个单位长度得到的点的坐标是( )
    A.(-1,6)B.(-1,2)C.(-1,1)D.(4,1)
    6、已知点A(x,5)在第二象限,则点B(﹣x,﹣5)在( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    7、如图在平面直角坐标系中,点N与点F关于原点O对称,点F的坐标是(3,2),则点N的坐标是( )
    A.(﹣3,﹣2)B.(﹣3,2)C.(﹣2,3)D.(2,3)
    8、在平面直角坐标系中,点P(2,5)关于y轴对称的点的坐标为( )
    A.(2,﹣5)B.(﹣2,﹣5)C.(﹣2,5)D.(﹣5,2)
    9、从车站向东走400米,再向北走500米到小红家,从小强家向南走500米,再向东走200米到车站,则小强家在小红家的( )
    A.正东方向B.正西方向C.正南方向D.正北方向
    10、已知点A(a+9,2a+6)在y轴上,a的值为( )
    A.﹣9B.9C.3D.﹣3
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,直角坐标平面xy内,动点P按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),…按这样的运动规律,动点P第2022次运动到点的坐标是_____.
    2、点P(﹣2,﹣4)关于y轴对称的点的坐标是_________.
    3、如图,等边三角形ABC,BC的高AD=4cm,点P为AD上一动点,E为AB边的中点,则BP+EP的最小值_________.
    4、在平面直角坐标系中,与点关于原点对称的点的坐标是________.
    5、在平面直角坐标系中,O为坐标原点,已知:A(3,2),B(5,0),则△AOB的面积为___________.
    三、解答题(10小题,每小题5分,共计50分)
    1、如图所示,在平面直角坐标系中,的顶点坐标分别是,和.
    (1)已知点关于轴的对称点的坐标为,求,的值;
    (2)画出,且的面积为 ;
    (3)画出与关于轴成对称的图形,并写出各个顶点的坐标.
    2、如图,在平面直角坐标系中,已知点A(﹣1,5),B(﹣3,1)和C(4,0).
    (1)平移线段AB,使点A平移到点C,画出平移后所得的线段CD,并写出点D的坐标;
    (2)将线段AB绕点A逆时针旋转90°,画出旋转后所得的线段AE,并写出点E的坐标;
    (3)线段MN与线段AB关于原点成中心对称,点A的对应点为点M,
    ①画出线段MN并写出点M的坐标;
    ②直接写出线段MN与线段CD的位置关系.
    3、如图1所示,已知点,有以点为顶点的直角的两边分别与轴、轴相交于点.
    (1)试说明;
    (2)若点坐标为,点坐标为,请直接写出与之间的数量关系;
    (3)如图2所示,过点作线段,交轴正半轴于点,交轴负半轴于点,使得点为中点,且,绕着顶点旋转直角,使得一边交轴正半轴于点,另一边交轴正半轴于点,此时,和是否还相等,请说明理由;
    (4)在(3)条件下,请直接写出的值.
    4、在平面直角坐标系中,的顶点坐标是、、.
    (1)画出绕点B逆时针旋转的;
    (2)画出关于点O的中心对称图形;
    (3)可由绕点M旋转得,请写出点M的坐标:________.
    5、如图所示,在平面直角坐标系中,已知,,.
    (1)在平面直角坐标系中画出,并求出的面积;
    (2)在(1)的条件下,把先关于y轴对称得到,再向下平移3个单位得到,则中的坐标分别为( ),( ),( );(直接写出坐标)
    (3)已知为轴上一点,若的面积为4,求点的坐标.
    6、如图,在平面直角坐标系中,△ABC的两个顶点A,B在x轴上,顶点C在y轴上,且∠ACB=90°.
    (1)图中与∠ABC相等的角是 ;
    (2)若AC=3,BC=4,AB=5,求点C的坐标.
    7、如图
    (1)敌方战舰C和我方战舰2号在我方潜艇什么方向?
    (2)如何确定敌方战舰B的位置?
    8、如图,已知△ABC各顶点的坐标分别为A(-3,2),B(-4,-3),C(-1,-1).

    (1)请在图中画出△ABC关于y轴对称的△A1B1C1,
    (2)并写出△A1B1C1的各点坐标.
    9、如图1,将射线OX按逆时针方向旋转β角,得到射线OY,如果点P为射线OY上的一点,且OP=a,那么我们规定用(a,β)表示点P在平面内的位置,并记为P(a,β).例如,图2中,如果OM=8,∠XOM=110°,那么点M在平面内的位置,记为M(8,110),根据图形,解答下面的问题:
    (1)如图3,如果点N在平面内的位置记为N(6,30),那么ON=________;∠XON=________.
    (2)如果点A,B在平面内的位置分别记为A(5,30),B(12,120),画出图形并求出AOB的面积.
    10、如图所示的方格纸中,每个小正方形的边长都是1个单位长度,三角形ABC的三个顶点都在小正方形的顶点上.
    (1)画出三角形ABC向左平移4个单位长度后的三角形DEF(点D、E、F与点A、B、C对应),并画出以点E为原点,DE所在直线为x轴,EF所在直线为y轴的平面直角坐标系;
    (2)在(1)的条件下,点D坐标(﹣3,0),将三角形DEF三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点P、Q、M(点P、Q、M与点D、E、F对应),画出三角形PQM,并直接写出点P的坐标.
    -参考答案-
    一、单选题
    1、B
    【分析】
    根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.
    【详解】
    解:点P(2,-1)关于x轴的对称点的坐标为(2,1),
    故选:B.
    【点睛】
    此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标的变化规律.
    2、A
    【分析】
    由题意可知BO=CO,又AB=AC,得点A在y轴上,即可求解.
    【详解】
    解:由题意可知BO=CO,
    ∵又AB=AC,
    ∴AO⊥BC,
    ∴点A在y轴上,
    ∴选项A符合题意,
    B选项三点共线,不能构成三角形,不符合题意;
    选项C、D都不在y轴上,不符合题意;
    故选:A.
    【点睛】
    本题考查了平面直角坐标系点的特征,解题关键是分析出点A的位置.
    3、D
    【分析】
    点关于x轴的对称点(a,-2),点关于y轴的对称点(-3,b),根据(a,-2)与点(-3,b)是同一个点,得到横坐标相同,纵坐标相同,计算a,b计算即可.
    【详解】
    ∵点关于x轴的对称点(a,-2),点关于y轴的对称点(-3,b),(a,-2)与点(-3,b)是同一个点,
    ∴a=-3,b=-2,
    ∴-5,
    故选D.
    【点睛】
    本题考查了坐标系中点的轴对称,熟练掌握对称时坐标的变化规律是解题的关键.
    4、C
    【分析】
    由对应点坐标确定平移方向,再由平移得出x,y的值,即可计算x+y.
    【详解】
    ∵A(3,﹣2),B(1,0)平移后的对应点C(5,x),D(y,0),
    ∴平移方法为向右平移2个单位,
    ∴x=﹣2,y=3,
    ∴x+y=1,
    故选:C.
    【点睛】
    本题考查坐标的平移,掌握点坐标平移的性质是解题的关键,点坐标平移:横坐标左减右加,纵坐标下减上加.
    5、A
    【分析】
    直接利用平移中点的变化规律求解即可,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
    【详解】
    ∵,,
    ∴得到的点的坐标是.
    故选:A.
    【点睛】
    本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.
    6、D
    【分析】
    由题意直接根据各象限内点坐标特征进行分析即可得出答案.
    【详解】
    ∵点A(x,5)在第二象限,
    ∴x<0,
    ∴﹣x>0,
    ∴点B(﹣x,﹣5)在四象限.
    故选:D.
    【点睛】
    本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    7、A
    【分析】
    根据点F点N关于原点对称,即可求解.
    【详解】
    解:∵F点与N点关于原点对称,点F的坐标是(3,2),
    ∴N点坐标为(﹣3,﹣2).
    故选:A
    【点睛】
    本题主要考查了关于原点对称的点的坐标特征,熟练掌握若两点关于原点对称,横纵坐标均互为相反数是解题的关键.
    8、C
    【分析】
    关于轴对称的两个点的坐标特点:横坐标互为相反数,纵坐标不变,根据原理直接可得答案.
    【详解】
    解:点P(2,5)关于y轴对称的点的坐标为:
    故选:C
    【点睛】
    本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的坐标特点:横坐标互为相反数,纵坐标不变”是解本题的关键.
    9、B
    【分析】
    根据二人向同一方向走的距离可知二人的方向关系,解答即可.
    【详解】
    解:二人都在车站北500米,小红在学校东,小强在学校西,所以小强家在小红家的正西.
    【点睛】
    本题考查方向角,解题的关键是画出相应的图形,利用数形结合的思想进行解答.
    10、A
    【分析】
    根据y轴上点的横坐标为0列式计算即可得解.
    【详解】
    解:∵点A(a+9,2a+6)在y轴上,
    ∴a+9=0,
    解得:a=-9,
    故选:A.
    【点睛】
    本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.
    二、填空题
    1、(2021,0)
    【分析】
    由图中点的坐标可得:每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2022除以4,再由商和余数的情况确定运动后点的坐标.
    【详解】
    由图中点的坐标可得:每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,
    ∵2022÷4=505余2,
    ∴第2022次运动为第505循环组的第2次运动,
    横坐标为,纵坐标为0,
    ∴点P运动第2022次的坐标为(2021,0).
    故答案为:(2021,0).
    【点睛】
    考查了点的坐标规律,解题关键是观察点的坐标变化,并寻找规律.
    2、(2,﹣4)
    【分析】
    根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.
    【详解】
    解:点P(-2,-4)关于y轴对称的点的坐标是(2,-4).
    故答案为:(2,-4).
    【点睛】
    本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.
    3、4cm
    【分析】
    先连接,再根据,将转化为,最后根据两点之间线段最短,求得的长,即为的最小值.
    【详解】
    解:连接,
    等边中,是边上的高,
    是边上的中线,即垂直平分

    当、、三点共线时,,
    等边中,是边的中点,

    的最小值为4,
    故答案为:4cm.
    【点睛】
    本题主要考查了等边三角形的轴对称性质和勾股定理的应用等知识,解题的关键是熟练掌握和运用等边三角形的性质以及轴对称的性质,解题时注意,最小值问题一般需要考虑两点之间线段最短或垂线段最短等结论.
    4、(-3,-1)
    【分析】
    由题意直接根据两个点关于原点对称时,它们的坐标符号相反进行分析即可得出答案.
    【详解】
    解:在平面直角坐标系中,与点关于原点对称的点的坐标是(-3,-1).
    故答案为:(-3,-1).
    【点睛】
    本题考查的是关于原点的对称的点的坐标,注意掌握平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数.
    5、5
    【分析】
    首先在坐标系中标出A、B两点坐标,由于B点在x轴上,所以面积较为容易计算,根据三角形面积的计算公式,即可求出△AOB的面积.
    【详解】
    解:如图所示,
    过A点作AD垂直x轴于D点,则h=2,
    ∴.
    故答案为:5.
    【点睛】
    本题主要考查的是坐标系中三角形面积的求法,需要准确对点位进行标注,并根据公式进行求解即可.
    三、解答题
    1、(1),;(2)作图见详解;13;(3)作图见详解;,,.
    【分析】
    (1)利用关于x轴的对称点的坐标特点(横坐标不变,纵坐标互为相反数)直接写出答案即可;
    (2)先确定A、B、C点的位置,然后顺次连接,最后运用割补法计算三角形面积即可;
    (3)先确定A、B、C三点关于y轴对称的对称点位置,然后顺次连接即可;最后直接写出三个点的坐标即可.
    【详解】
    解:(1)∵点关于x轴的对称点P的坐标为,
    ∴,;
    (2)如图:即为所求,
    SΔABC=8×4-12×1×8-12×3×2-12×6×4=13,
    故答案为:13;
    (3)如图:A、B、C点关于y轴的对称点为:,,,顺次连接,
    ∴即为所求
    ,,.
    【点睛】
    此题主要考查了轴对称变换的作图题,确定组成图形关键点的对称点是解答本题的关键.
    2、(1)作图见解析,点D的坐标为(2,-4);(2)作图见解析,点E的坐标为(3,3);(3)①作图见解析,点M的坐标为(1,-5);②MN∥CD.
    【分析】
    (1)根据点A平移到点C,即可得到平移的方向和距离,进而画出平移后所得的线段CD;
    (2)根据线段AB绕点A逆时针旋转90°,即可画出旋转后所得的线段AE;
    (3)①分别作出A,B的对应点M,N,连接即可;
    ②由平行线的传递性可得答案.
    【详解】
    解:(1)如图所示,线段CD即为所求,点D的坐标为(2,-4);
    (2)如图所示,线段AE即为所求,点E的坐标为(3,3);
    (3)①如图所示,线段MN即为所求,点M的坐标为(1,-5);
    ②∵线段MN与线段AB关于原点成中心对称,
    ∴MN∥AB,
    ∵线段CD是由线段AB平移得到的,
    ∴CD∥AB,
    ∴MN∥CD.
    【点睛】
    本题主要考查了利用平移变换和旋转变换作图,解题的关键是理解题意,灵活运用所学知识解决问题.
    3、(1)见解析;(2);(3)相等,见解析;(4)9
    【分析】
    (1)过点作轴于点,轴于点,证明即可得到结论;
    (2),由可得结论;
    (3)连接OP,根据题意可得,,从而得,再证明S可得,进一步可得结论;
    (4)过点P作PQ⊥y轴,得PQ=OQ=3,根据题意可得,故BQ=3,从而可求出,由(3)得,从而可得
    【详解】
    解:(1)过点作轴于点,轴于点,
    ∵点坐标为

    又∵




    (2)由(1)知

    ∵点坐标为,点坐标为,且



    (3)相等,
    理由:连接,如图,
    ∵,且,为中点
    ∴,



    又∵

    在和中



    (4)由(3)知

    过点P作PQ⊥y轴于点Q,
    ∵P(3,-3)
    ∴PQ=OQ=3





    ∴=9
    【点睛】
    本题主要考查了坐标与图形的性质,全等三角形的判定与性质,等腰直角三角形的性质等知识,找出判定三角形全等的条件是解答本题的关键
    4、(1)画图见解析;(2)画图见解析;(3)
    【分析】
    (1)分别确定绕逆时针旋转后的对应点再顺次连接从而可得答案;
    (2)分别确定关于原点对称的对称点再顺次连接从而可得答案;
    (3)如图,由;是旋转对应点,则到旋转中心的距离相等,到旋转中心的距离相等,可得线段的垂直平分线的交点即为旋转中心,再根据在坐标系内的位置写出其坐标即可.
    【详解】
    解:(1)如图,是所求作的三角形,
    (2)如图,是所求作的三角形;
    (3)如图,;是旋转对应点,
    到旋转中心的距离相等,到旋转中心的距离相等,
    则线段的垂直平分线的交点即为旋转中心,其坐标为:
    【点睛】
    本题考查的是旋转作图,中心对称的作图,确定旋转中心,掌握旋转的性质是解本题的关键.
    5、(1)见解析,4;(2)0,-2,-2,-3,-4,0;(3)或.
    【分析】
    (1)先画出△ABC,然后再利用割补法求△ABC得面积即可;
    (2)先作出,然后结合图形确定所求点的坐标即可;
    (3)先求出PB的长,然后分P在B的左侧和右侧两种情况解答即可.
    【详解】
    解:(1)画出如图所示:
    的面积是:;
    (2)作出如图所示,则(0,-2),( -2,-3),(-4,0)
    故填:0,-2,-2,-3,-4,0;
    (3)∵P为x轴上一点,的面积为4,
    ∴,
    ∴当P在B的右侧时,横坐标为:
    当P在B的左侧时,横坐标为,
    故P点坐标为:或.
    【点睛】
    本题主要考查了轴对称、三角形的平移、三角形的面积以及平面直角坐标系中点的坐标等知识点,根据题意画出图形成为解答本题的关键.
    6、(1)∠ACO;(2)点C的坐标为(0,).
    【分析】
    (1)由同角的余角相等,可得到∠ABC=∠ACO;
    (2)利用面积法可求得CO的长,进而得到点C的坐标.
    【详解】
    解:(1)∵OC⊥AB,∠ACB=90°.
    ∴∠ABC+∠BCO=∠ACO+∠BCO=90°,
    ∴∠ABC=∠ACO;
    故答案为:∠ACO;
    (2)∵AC=3,BC=4,AB=5,
    ∴三角形ABC是直角三角形,∠ACB=90°
    ABCO=ACBC,即CO==,
    ∴点C的坐标为(0,).
    【点睛】
    本题考查了同角的余角相等,面积法求线段的长,坐标与图形,解题的关键是灵活运用所学知识解决问题.
    7、(1)敌方战舰C和我方战舰2号在我方潜艇的正东方;(2)要确定敌方战舰B的位置,需要敌方战舰B与我方潜艇的方向和距离两个数据.
    【分析】
    (1)根据图中的位置与方向即可确定.
    (2)要确定每艘战舰的位置,需要知道每艘战舰分别在什么方向和与我方潜艇的距离是多少.
    【详解】
    (1)由图像可知,敌方战舰C和我方战舰2号在我方潜艇正东方.
    (2)仅知道在我方潜艇北偏东40°方向有小岛,而要确定敌方战舰B的位置,还需要敌方战舰B与我方潜艇的方向和距离两个数据.
    【点睛】
    本题考查了方向角的表示,方向角:指正北或指正南方向线与目标方向线所成的小于的角叫做方向角.
    8、(1)见解析;(2)A1(3,2),B1(4,-3),C1(1,-1).
    【分析】
    (1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可;
    (2)根据所作图形可得答案.
    【详解】
    解:(1)如图所示,△A1B1C1即为所求作.
    (2)由图可知,A1(3,2),B1(4,-3),C1(1,-1).
    【点睛】
    本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点.注意:关于x轴对称的点,横坐标相同,纵坐标互为相反数.
    9、(1)6,30°;(2)见解析,30
    【分析】
    (1)由题意得第一个坐标表示此点距离原点的距离,第二个坐标表示此点与原点的连线与x轴所夹的角的度数;
    (2)根据相应的度数判断出△AOB的形状,再利用三角形的面积公式求解即可.
    【详解】
    (1)根据点N在平面内的位置N(6,30)可知,ON=6,∠XON=30°.
    答案:6,30°
    (2)如图所示:
    ∵A(5,30),B(12,120),
    ∴∠BOX=120°,∠AOX=30°,
    ∴∠AOB=90°,
    ∵OA=5,OB=12,
    ∴△AOB的面积为OA·OB=30.
    【点睛】
    本题考查了坐标确定位置及旋转的性质,解决本题的关键是理解所给的新坐标的含义.
    10、(1)见解析;(2)画图见解析,点P的坐标为(-5,3)
    【分析】
    (1)根据平移的特点先找出D、E、F所在的位置,然后根据题意建立坐标系即可;
    (2)将三角形DEF三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点P、Q、M,即点P可以看作是点D向左平移2个单位,向上平移3个单位得到的,由此求解即可.
    【详解】
    解:(1)如图所示,即为所求;
    (2)如图所示,△PQM即为所求;
    ∵P是D(-3,0)横坐标减2,纵坐标加3得到的,
    ∴点P的坐标为(-5,3).
    【点睛】
    本题主要考查了平移作图,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握点坐标平移的特点.

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习题,共30页。试卷主要包含了若平面直角坐标系中的两点A,点P在第二象限内,P点到x,已知点在一等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时训练:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时训练,共28页。试卷主要包含了点A个单位长度.,若平面直角坐标系中的两点A,若点在第三象限,则点在.等内容,欢迎下载使用。

    2020-2021学年第十五章 平面直角坐标系综合与测试测试题:

    这是一份2020-2021学年第十五章 平面直角坐标系综合与测试测试题,共30页。试卷主要包含了一只跳蚤在第一象限及x轴等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map