终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年必考点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线达标测试试题(含详细解析)

    立即下载
    加入资料篮
    2022年必考点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线达标测试试题(含详细解析)第1页
    2022年必考点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线达标测试试题(含详细解析)第2页
    2022年必考点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线达标测试试题(含详细解析)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试练习

    展开

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试练习,共29页。试卷主要包含了下列说法中,正确的是,下列说法中正确的个数是等内容,欢迎下载使用。
    七年级数学第二学期第十三章相交线 平行线达标测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,木工用图中的角尺画平行线的依据是( )

    A.垂直于同一条直线的两条直线平行
    B.平行于同一条直线的两条直线平行
    C.同位角相等,两直线平行
    D.经过直线外一点,有且只有一条直线与这条直线平行
    2、一辆汽车在广阔的草原上行驶,两次拐弯后,行驶的方向与原来的方向相同,那么这两次拐弯的角度可能是( )
    A.第一次向右拐40°,第二次向右拐140°.
    B.第一次向右拐40°,第二次向左拐40°.
    C.第一次向左拐40°,第二次向右拐140°.
    D.第一次向右拐140°,第二次向左拐40°.
    3、如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是( )

    A.∠A+∠C+∠D+∠E=360° B.∠A+∠D=∠C+∠E
    C.∠A﹣∠C+∠D+∠E=180° D.∠E﹣∠C+∠D﹣∠A=90°
    4、如图,下列条件中,不能判断∥的是( )

    A.∠1=∠3 B.∠2=∠4 C.∠4+∠5=180° D.∠3=∠4
    5、下列说法中,正确的是(  )
    A.从直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离
    B.互相垂直的两条直线不一定相交
    C.直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm
    D.过一点有且只有一条直线垂直于已知直线
    6、下列说法中正确的个数是(  )
    (1)在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c
    (2)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a⊥c
    (3)在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c
    (4)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.
    A.1 B.2 C.3 D.4
    7、如图,直线被所截,下列说法,正确的有( )

    ①与是同旁内角;
    ②与是内错角;
    ③与是同位角;
    ④与是内错角.
    A.①③④ B.③④ C.①②④ D.①②③④
    8、如图,AB∥CD,AE∥CF,∠A=41°,则∠C的度数为( )

    A.139° B.141° C.131° D.129°
    9、如图,直线l1l2,直线l3与l1、l2分别相交于点A,C,BC⊥l3交l1于点B,若∠2=30°,则∠1的度数为(  )

    A.30° B.40° C.50° D.60°
    10、如图,若AB∥CD,CD∥EF,那么BCE=( )

    A.180°-2+1 B.180°-1-2 C.2=21 D.1+2
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,∠AOB=90°,则AB___BO;若OA=3cm,OB=2cm,则A点到OB的距离是________cm,点B到OA的距离是________cm;O点到AB上各点连接的所有线段中________最短.

    2、如图,长方形纸片ABCD中AD∥BC,AB∥CD,∠A=90°,将纸片沿EF折叠,使顶点C、D分别落在点C'、D'处,C'E交AF于点G.若∠CEF=68°,则么∠GFD'=______°.

    3、如图所示,过点P画直线a的平行线b的作法的依据是___________.

    4、如图在△ABC中,AB=AC=5,S△ABC=10,AD是△ABC的中线,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为______.

    5、如图,小明同学在练习本上的相互平行的横格上先画了直线,度量出∠1=112°,接着他准备在点A处画直线.若要使∥,则∠2的度数为_____度.

    三、解答题(10小题,每小题5分,共计50分)
    1、请把下列证明过程及理由补充完整(填在横线上):
    2、如图,在ABC中,DEAC,DFAB.
    (1)判断∠A与∠EDF之间的大小关系,并说明理由.
    (2)求∠A+∠B+∠C的度数.

    3、如图,已知∠A=120°,∠FEC=120°,∠1=∠2,试说明∠FDG=∠EFD.请补全证明过程,即在下列括号内填上结论或理由.

    解:∵∠A=120°,∠FEC=120°(已知),
    ∴∠A=  (   ).
    ∴AB∥  (   ).
    又∵∠1=∠2(已知),
    ∴AB∥CD (   ).
    ∴EF∥   (   ).
    ∴∠FDG=∠EFD (   ).
    4、如图,己知AB∥DC,AC⊥BC,AC平分∠DAB,∠B=50°,求∠D的大小.
    阅读下面的解答过程,并填括号里的空白(理由或数学式).
    解:∵AB∥DC(    ),
    ∴∠B+∠DCB=180°(    ).
    ∵∠B=(    )(已知),
    ∴∠DCB=180°﹣∠B=180°﹣50°=130°.
    ∵AC⊥BC(已知),
    ∴∠ACB=(    )(垂直的定义).
    ∴∠2=(    ).
    ∵AB∥DC(已知),
    ∴∠1=(    )(    ).
    ∵AC平分∠DAB(已知),
    ∴∠DAB=2∠1=(    )(角平分线的定义).
    ∵AB∥DC(己知),
    ∴(    )+∠DAB=180°(两条直线平行,同旁内角互补).
    ∴∠D=180°﹣∠DAB=   .

    5、如图所示,M、N是直线AB上两点,∠1=∠2,问∠1与∠2,∠3与∠4是对顶角吗? ∠1与∠5,∠3与∠6是邻补角吗?

    6、已知,直线AB、CD交于点O,EO⊥AB,∠EOC:∠BOD=7:11.
    (1)如图1,求∠DOE的度数;
    (2)如图2,过点O画出直线CD的垂线MN,请直接写出图中所有度数为125°的角.

    7、如图,平面上有三个点A、B、C.

    (1)根据下列语句按要求画图.
    ①画射线AB,用圆规在线段AB的延长线上截取BD=AB(保留作图痕迹);
    ②连接CA、CD、CB;
    ③过点C画CE⊥AD,垂足为点E;
    ④过点D画DF∥AC,交CB的延长线于点F.
    (2)①在线段CA、CE、CD中,线段_________最短,依据是_________.
    ②用刻度尺或圆规检验DF与AC的大小关系为_________.
    8、如图,直线AB,CD,EF相交于点O,OG⊥CD.
    (1)已知∠AOC=38°12',求∠BOG的度数;
    (2)如果OC是∠AOE的平分线,那么OG是∠EOB的平分线吗?说明理由.

    9、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.

    (1)如果∠2=∠3,那么____________.(____________,____________)
    (2)如果∠2=∠5,那么____________.(____________,____________)
    (3)如果∠2+∠1=180°,那么____________.(____________,____________)
    (4)如果∠5=∠3,那么____________.(____________,____________)
    10、如图,EF⊥BC,∠1=∠C,∠2+∠3=180°,试说明∠ADC=90°.请完善解答过程,并在括号内填写相应的理论依据.
    解:∵∠1=∠C,(已知)
    ∴GD∥   .( )
    ∴∠2=∠DAC.( )
    ∵∠2+∠3=180°,(已知)
    ∴∠DAC+∠3=180°.(等量代换)
    ∴AD∥EF.( )
    ∴∠ADC=∠   .( )
    ∵EF⊥BC,(已知)
    ∴∠EFC=90°.( )
    ∴∠ADC=90°.(等量代换)


    -参考答案-
    一、单选题
    1、C
    【分析】
    由于角尺是一个直角,木工画线实质是在画一系列的直角,且这些直角有一边在同一直线上,根据平行线的判定即可作出判断.
    【详解】
    由于木工画一条线实际上是在画一个直角,且这些直角的一边在同一直线上,且这些直角是同位角相等,因而这些直线平行.
    故选:C
    【点睛】
    本题是平行线判定在实质中的应用,关键能够把实际问题转化为数学问题.
    2、B
    【分析】
    画出图形,根据平行线的判定分别判断即可得出.
    【详解】
    A.如图,由内错角相等可知,第二次拐弯后与原来平行,但方向相反,故不符合题意;

    B.如图,由同位角相等可知,第二次拐弯后与原来平行,且方向相同,故符合题意;

    C.如图,由内错角不相等可知,第二次拐弯后与原来不平行,故不符合题意;

    D.如图,由同位角不相等可知,第二次拐弯后与原来不平行,故不符合题意.

    故选:B.
    【点睛】
    本题考查了平行线的判定,正确画出图形,熟记判定定理是解题的关键.
    3、C
    【分析】
    如图,过点C作CG∥AB,过点D作DH∥EF,根据平行线的性质可得∠A=∠ACG,∠EDH=180°﹣∠E,根据AB∥EF可得CG∥DH,根据平行线的性质可得∠CDH=∠DCG,进而根据角的和差关系即可得答案.
    【详解】
    如图,过点C作CG∥AB,过点D作DH∥EF,
    ∴∠A=∠ACG,∠EDH=180°﹣∠E,
    ∵AB∥EF,
    ∴CG∥DH,
    ∴∠CDH=∠DCG,
    ∴∠ACD=∠ACG+∠CDH=∠A+∠CDE﹣(180°﹣∠E),
    ∴∠A﹣∠ACD+∠CDE+∠E=180°.

    故选:C.
    【点睛】
    本题考查了平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质,正确作出辅助线是解题关键.
    4、D
    【分析】
    根据平行线的判定定理对各选项进行逐一判断即可.
    【详解】
    解:、,内错角相等,
    ,故本选项错误,不符合题意;
    、,同位角相等,
    ,故本选项错误,不符合题意;
    、,同旁内角互补,
    ,故本选项错误,不符合题意;
    、,它们不是内错角或同位角,
    与的关系无法判定,故本选项正确,符合题意.
    故选:D.
    【点睛】
    本题考查的是平行线的判定,解题的关键是熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行的知识.
    5、C
    【分析】
    根据点到直线距离的定义分析,可判断选项A和C;根据相交线的定义分析,可判断选项B,根据垂线的定义分析,可判断选项D,从而完成求解.
    【详解】
    从直线外一点到这条直线的垂线段的长度,叫做这个点到这条直线的距离,即选项A错误;
    在同一平面内,互相垂直的两条直线一定相交,即选项B错误;
    直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm,即选项C正确;
    在同一平面内,过一点有且只有一条直线垂直于已知直线,即选项D错误;
    故选:C.
    【点睛】
    本题考查了点和直线的知识;解题的关键是熟练掌握点到直线距离、相交线、垂线的性质,从而完成求解.
    6、C
    【分析】
    根据平行线的性质分析判断即可;
    【详解】
    在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c,故(1)正确;
    在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c,故(2)错误;
    在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c,故(3)正确;
    在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.故(4)正确;
    综上所述,正确的是(1)(3)(4);
    故选C.
    【点睛】
    本题主要考查了平行线的性质,准确分析判断是解题的关键.
    7、D
    【分析】
    根据同位角、内错角、同旁内角的定义可直接得到答案.
    【详解】
    解:①与是同旁内角,说法正确;
    ②与是内错角,说法正确;
    ③与是同位角,说法正确;
    ④与是内错角,说法正确,
    故选:D.
    【点睛】
    此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F” 形,内错角的边构成“Z”形,同旁内角的边构成“U”形.
    8、A
    【分析】
    如图,根据AECF,得到∠CGB=41°,根据ABCD,即可得到∠C=139°..
    【详解】
    解:如图,∵AECF,
    ∴∠A=∠CGB=41°,
    ∵ABCD,
    ∴∠C=180°-∠CGB=139°.

    故选:A
    【点睛】
    本题考查了平行线的性质,熟知平行线的性质是解题关键.
    9、D
    【分析】
    根据平行线的性质和垂直的定义解答即可.
    【详解】
    解:∵BC⊥l3交l1于点B,
    ∴∠ACB=90°,
    ∵∠2=30°,
    ∴∠CAB=180°−90°−30°=60°,
    ∵l1l2,
    ∴∠1=∠CAB=60°.
    故选:D.
    【点睛】
    此题考查平行线的性质,关键是根据平行线的性质解答.
    10、A
    【分析】
    根据两直线平行,内错角相等,同旁内角互补,这两条性质解答.
    【详解】
    ∵AB∥CD,CD∥EF,
    ∴∠1=∠BCD,∠ECD+∠2=180°,
    ∴BCE=∠BCD+∠ECD=180°-2+1,
    故选A.
    【点睛】
    本题考查了平行线的性质,正确选择合适的平行线性质是解题的关键.
    二、填空题
    1、> 3 2 垂线段
    【分析】
    根据点到直线的距离的定义,大角对大边,垂线段最短进行求解即可.
    【详解】
    解:∵∠AOB=90°,
    ∴AO⊥BO,AB>BO,
    ∵OA=3cm,OB=2cm,
    ∴A点到OB的距离是3cm,点B到OA的距离是2cm,O点到AB上各点连接的所有线段中垂线段最短,
    故答案为:>,3,2,垂线段.
    【点睛】
    本题主要考查了点到直线的距离,大角对大边,垂线段最短,解题的关键在于能够熟知相关定义.
    2、44
    【分析】
    根据平行线的性质和翻折不变性解答.
    【详解】
    解:∵ADBC,
    ∴∠DFE=180°−∠CEF=180°−68°=112°,
    ∴∠D′FE=112°,∠GFE=180°−112°=68°,
    ∴∠GFD′=112°−68°=44°.
    故答案为:44.
    【点睛】
    本题考查了平行线的性质和翻折不变性,注意观察图形.
    3、内错角相等,两直线平行
    【分析】
    根据平行线的判定方法解决问题即可.
    【详解】
    解:由作图可知,


    (内错角相等两直线平行),
    故答案为:内错角相等,两直线平行.
    【点睛】
    本题考查作图,平行线的判定等知识,熟练掌握平行线的判定定理是解题的关键,属于中考常考题型.
    4、4
    【分析】
    作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,根据三角形面积公式求出CN,根据对称性质求出CF+EF=CM,根据垂线段最短得出CF+EF即可得出答案.
    【详解】
    解:方法一:作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,
    ∵S△ABC=×AB×CN,
    ∴CN=4,
    ∵E关于AD的对称点M,
    ∴EF=FM,
    ∴CF+EF=CF+FM=CM,
    根据垂线段最短得出:CM≥CN,
    即CF+EF≥4,
    即CF+EF的最小值是4.

    方法二:∵AB=AC,AD是△ABC的中线,
    ∴AD⊥BC,
    ∴点C与点B关于AD对称,
    过B作BE⊥AC于E,交AD于F,连接CF,
    则此时,CF+EF的值最小,且最小值为BE,
    ∵S△ABC=•AC•BE=10,
    ∴BE=4,
    ∴CF+EF的最小值4,

    故答案为:4.
    【点睛】
    本题考查了垂线段最短以及对称轴作图,结合等腰三角形的性质取E或C对称点连接是解题的关键.
    5、68
    【分析】
    根据平行线的性质,得出,根据平行线的判定,得出,即可得到,进而得到的度数.
    【详解】
    解:∵练习本的横隔线相互平行,

    ∵要使,
    ∴,
    又,

    即,
    故答案为:68.

    【点睛】
    本题主要考查了平行线的性质与判定条件,解题时注意:两直线平行,同位角相等;同旁内角互补,两直线平行.
    三、解答题
    1、∠CAD;两直线平行,内错角相等;∠CAD;等量代换;等式的性质;∠CAD;等量代换;同位角相等,两直线平行
    【分析】
    根据AD∥BC,可得∠3=∠CAD,从而得到∠4=∠CAD,再由∠1=∠2,可得∠BAF=∠CAD.从而得到∠4=∠BAF.即可求证.
    【详解】
    证明:∵AD∥BC(已知),
    ∴∠3=∠CAD(两直线平行,内错角相等).
    ∵∠3=∠4(已知),
    ∴∠4=∠CAD(等量代换).
    ∵∠1=∠2(已知),
    ∴∠1+∠CAF=∠2+∠CAF(等式的性质).
    即∠BAF=∠CAD.
    ∴∠4=∠BAF.(等量代换).
    ∴AB∥CD(同位角相等,两直线平行).
    【点睛】
    本题主要考查了平行线的性质和判定,熟练掌握平行线的性质和判定定理是解题的关键.
    2、(1)两角相等,见解析;(2)180°
    【分析】
    (1)根据平行线的性质得到∠A=∠BED,∠EDF=∠BED,即可得到结论;
    (2)根据平行线的性质得到∠C=∠EDB,∠B=∠FDC,利用平角的定义即可求解;
    【详解】
    (1)两角相等,理由如下:
    ∵DE∥AC,
    ∴∠A=∠BED(两直线平行,同位角相等).
    ∵DF∥AB,
    ∴∠EDF=∠BED(两直线平行,内错角相等),
    ∴∠A=∠EDF(等量代换).
    (2)∵DE∥AC,
    ∴∠C=∠EDB(两直线平行,同位角相等).
    ∵DF∥AB,
    ∴∠B=∠FDC(两直线平行,同位角相等).
    ∵∠EDB+∠EDF+∠FDC=180°,
    ∴∠A+∠B+∠C=180°(等量代换).
    【点睛】
    本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
    3、∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等
    【分析】
    利用平行线的判定,由已知得AB∥EF、AB∥CD,可推出EF∥CD,利用平行线的性质得结论
    【详解】
    解:∵∠A=120°,∠FEC=120°(已知),
    ∴∠A=∠FEC(等量代换),
    ∴AB∥EF(同位角相等,两直线平行),
    又∵∠1=∠2(已知),
    ∴AB∥CD(内错角相等,两直线平行),
    ∴EF∥CD(平行于同一条直线的两直线互相平行),
    ∴∠FDG=∠EFD(两直线平行,内错角相等),
    故答案为:∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等.
    【点睛】
    本题考查了平行线的性质和判定,学会分析,正确的利用平行线的性质和判定是解决本题的关键.
    4、见解析.
    【分析】
    先根据平行线的性质可得,从而可得,再根据垂直的定义可得,从而可得,然后根据平行线的性质可得,根据角平分线的定义可得,最后根据平行线的性质即可得.
    【详解】
    解:∵(已知),
    ∴(两直线平行,同旁内角互补).
    ∵(已知),
    ∴.
    ∵(已知),
    ∴(垂直的定义).
    ∴.
    ∵(已知),
    ∴(两直线平行,内错角相等).
    ∵平分(已知),
    ∴(角平分线的定义).
    ∵(己知),
    ∴(两条直线平行,同旁内角互补).
    ∴.
    【点睛】
    本题考查了平行线的性质、垂直的定义、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.
    5、∠1和∠2,∠3和∠4都不是对顶角,∠1与∠5,∠3与∠6也都不是邻补角
    【分析】
    根据对顶角和邻补角的定义求解即可.
    【详解】
    解:根据对顶角的定义可得:∠1和∠2,∠3和∠4都不是对顶角;
    根据邻补角的定义可得,∠1与∠5,∠3与∠6也都不是邻补角.
    【点睛】
    此题考查了邻补角和对顶角的定义,解题的关键是掌握邻补角和对顶角的有关定义,牢记两条直线相交,才能产生对顶角或邻补角.两个角有公共点顶点,且角的一边重合、另一条边互为反向延长线,这样的两个角叫做邻补角,对顶角是指角的顶点重合,角的两条边分别互为反向延长线的角。
    6、(1)145°;(2)图中度数为125°的角有:∠EOM,∠BOC,∠AOD.
    【分析】
    (1)由EO⊥AB,得到∠BOE=90°,则∠COE+∠BOD=90°,再由∠EOC:∠BOD=7:11,求出∠COE=35°,∠BOD=55°,则∠DOE=∠BOD+∠BOE=145°;
    (2)由MN⊥CD,得到∠COM=90°,则∠EOM=∠COE+∠COM=125°,再由∠BOD=55°,得到∠BOC=180°-∠BOD=125°,则∠AOD=∠BOC=125°.
    【详解】
    解:(1)∵EO⊥AB,
    ∴∠BOE=90°,
    ∴∠COE+∠BOD=90°,
    ∵∠EOC:∠BOD=7:11,
    ∴∠COE=35°,∠BOD=55°,
    ∴∠DOE=∠BOD+∠BOE=145°;
    (2)∵MN⊥CD,
    ∴∠COM=90°,
    ∴∠EOM=∠COE+∠COM=125°,
    ∵∠BOD=55°,
    ∴∠BOC=180°-∠BOD=125°,
    ∴∠AOD=∠BOC=125°,
    ∴图中度数为125°的角有:∠EOM,∠BOC,∠AOD.
    【点睛】
    本题主要考查了几何中角度的计算,垂线的定义,解题的关键在于能够熟练掌握垂线的定义.
    7、(1)见解析;(2)①;垂线段最短;②相等
    【分析】
    (1)根据题意作图即可;
    (2)根据垂线段最短以及圆规进行检验即可.
    【详解】
    (1)如图所示,即为所求;

    (2)①根据垂线段最短可知,在线段CA、CE、CD中,线段CE最短;
    ②用圆规检验DF=AC.
    【点睛】
    本题主要考查了画平行线,画垂线,画线段,垂线段最短等等,熟知相关知识是解题的关键.
    8、(1)51°48′;(2)OG是∠EOB的平分线,理由见解析
    【分析】
    (1)根据互为余角的意义和对顶角的性质,可得∠AOC=∠BOD=38°12′,进而求出∠BOG;
    (2)求出∠EOG=∠BOG即可.
    【详解】
    解:(1)∵OG⊥CD.
    ∴∠GOC=∠GOD=90°,
    ∵∠AOC=∠BOD=38°12′,
    ∴∠BOG=90°﹣38°12′=51°48′,
    (2)OG是∠EOB的平分线,
    理由:
    ∵OC是∠AOE的平分线,
    ∴∠AOC=∠COE=∠DOF=∠BOD,
    ∵∠COE+∠EOG=∠BOG+∠BOD=90°,
    ∴∠EOG=∠BOG,
    即:OG平分∠BOE.
    【点睛】
    本题主要考查角平分线的定义及余角,熟练掌握角平分线的定义及余角是解题的关键.
    9、(1)EFDG,内错角相等,两直线平行;(2)ABEF,同位角相等,两直线平行;(3)ADBC,同旁内角互补,两直线平行;(4)ABDG,内错角相等,两直线平行;
    【分析】
    (1)根据两直线被第3条直线所截,确定∠2,∠3的位置为内错角,然后再判断直线平行即可;
    (2)根据两直线被第3条直线所截,确定∠2,∠5的位置为同位角,然后再判断直线平行即可;
    (3)根据两直线被第3条直线所截,确定∠2,∠1的位置为同旁内角,然后再判断直线平行即可;
    (4)根据两直线被第3条直线所截,确定∠5,∠3的位置为内错角,然后再判断直线平行即可.
    【详解】
    (1)如果∠2=∠3,那么EF∥DC.(内错角相等,两直线平行);
    (2)如果∠2=∠5,那么EF∥AB.(同位角相等,两直线平行);
    (3)如果∠2+∠1=180°,那么AD∥BC.(同旁内角互补,两直线平行);
    (4)如果∠5=∠3,那么AB∥CD.(内错角相等,两直线平行.
    故答案为:(1)EFDG,内错角相等,两直线平行;(2)ABEF,同位角相等,两直线平行;(3)ADBC,同旁内角互补,两直线平行;(4)ABDG,内错角相等,两直线平行.
    【点睛】
    本题考查平行线的判定,角的位置关系识别,掌握三线八角的两角位置关系,直线平行的判定定理是解题关键.
    10、AC,同位角相等,两直线平行;两直线平行,内错角相等;同旁内角互补,两直线平行;EFC,两直线平行,同位角相等;垂直定义
    【分析】
    根据平行线的判定与性质以及垂直的定义即可完成填空.
    【详解】
    解:如图,

    ∵∠1=∠C,(已知)
    ∴,(同位角相等,两直线平行)
    ∴∠2=∠DAC,(两直线平行,内错角相等)
    ∵∠2+∠3=180°,(已知)
    ∴∠DAC+∠3=180°,(等量代换)
    ∴,(同旁内角互补,两直线平行)
    ∴∠ADC=∠EFC,(两直线平行,同位角相等)
    ∵EF⊥BC,(已知)
    ∴∠EFC=90°,(垂直的定义)
    ∴∠ADC=90°.(等量代换)
    【点睛】
    本题考查平行线的判定与性质,掌握平行线的判定定理以及性质是解题的关键.

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后作业题:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后作业题,共31页。试卷主要包含了下列说法中正确的个数是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步练习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步练习题,共33页。试卷主要包含了直线m外一点P它到直线的上点A等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步训练题:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步训练题,共26页。试卷主要包含了如图,∠1与∠2是同位角的是,如图,,交于点,,,则的度数是,在下列各题中,属于尺规作图的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map