![精品试卷沪教版七年级数学第二学期第十四章三角形综合测评试卷(精选)第1页](http://img-preview.51jiaoxi.com/2/3/12709589/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷沪教版七年级数学第二学期第十四章三角形综合测评试卷(精选)第2页](http://img-preview.51jiaoxi.com/2/3/12709589/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷沪教版七年级数学第二学期第十四章三角形综合测评试卷(精选)第3页](http://img-preview.51jiaoxi.com/2/3/12709589/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学第十四章 三角形综合与测试当堂检测题
展开
这是一份初中数学第十四章 三角形综合与测试当堂检测题,共32页。试卷主要包含了如图,ABC≌DEF,点B等内容,欢迎下载使用。
沪教版七年级数学第二学期第十四章三角形综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在Rt△ABC中,∠ACB=90°,∠BAC=40°,直线a∥b,若BC在直线b上,则∠1的度数为( )
A.40° B.45° C.50° D.60°
2、如图,ABC的面积为18,AD平分∠BAC,且AD⊥BD于点D,则ADC的面积是( )
A.8 B.10 C.9 D.16
3、我们称网格线的交点为格点.如图,在4×4的长方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得△ABC是等腰直角三角形,则满足条件的格点C的个数是( )
A.3 B.4 C.5 D.6
4、等腰三角形的一个顶角是80°,则它的底角是( ).
A.40° B.50° C.60° D.70°
5、满足下列条件的两个三角形不一定全等的是( )
A.周长相等的两个三角形 B.有一腰和底边对应相等的两个等腰三角形
C.三边都对应相等的两个三角形 D.两条直角边对应相等的两个直角三角形
6、如图,AC=BC,∠C=α,DE⊥AC于E,FD⊥AB于D,则∠EDF等于( ).
A.α B.90°-α C.90°-α D.180°-2α
7、已知等腰三角形有一个角为50°,则这个等腰三角形的底角度数是( ).
A.65° B.65°或80° C.50°或80° D.50°或65°
8、如图,ABC≌DEF,点B、E、C、F在同一直线上,若BC=7,EC=4,则CF的长是( )
A.2 B.3 C.4 D.7
9、如图,工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是( )
A.两点确定一条直线
B.两点之间,线段最短
C.三角形具有稳定性
D.三角形的任意两边之和大于第三边
10、如图,在中,、分别平分、,过点作直线平行于,分别交、于点、,当大小变化时,线段和的大小关系是
A. B. C. D.不能确定
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,是等腰直角三角形,AB是斜边,以BC为一边在右侧作等边三角形BCD,连接AD与BC交于点E,则的度数为______度.
2、如图,线段AC与BD相交于点O,∠A=∠D=90°,要证明△ABC≌△DCB,还需添加的一个条件是____________.(只需填一个条件即可)
3、如图,在△ABC中,CA=CB,∠ACB=120°,E为AB上一点,∠DCE=∠DAE=60°,AD=2.4,BE=7,则DE=_____.
4、已知△ABC的面积是12,AB=AC=5,AD是BC边上的中线,E,P分别是AC,AD上的动点,则CP+EP的最小值为_______.
5、在新年联欢会上,老师设计了“你说我画”的游戏.游戏规则如下:甲同学需要根据乙同学提供的三个条件画出形状和大小都确定的三角形.已知乙同学说出的前两个条件是“,”.现仅存下列三个条件:①;②;③.为了甲同学画出形状和大小都确定的,乙同学可以选择的条件有: ______.(填写序号,写出所有正确答案)
三、解答题(10小题,每小题5分,共计50分)
1、如图,AD,BC相交于点O,AO=DO.
(1)如果只添加一个条件,使得△AOB≌△DOC,那么你添加的条件是 (要求:不再添加辅助线,只需填一个答案即可);
(2)根据已知及(1)中添加的一个条件,证明AB=DC.
2、如图,将△ABC绕点A逆时针旋转得到△ADE,点D在BC上,已知∠B=70°,求∠CDE的大小.
3、如图,在长方形ABCD中,AD=3,DC=5,动点M从A点出发沿线段AD—DC以每秒1个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD—DA以每秒3个单位长度的速度向终点A运动.ME⊥PQ于点E,NF⊥PQ于点F,设运动的时间为秒.
(1)在运动过程中当M、N两点相遇时,求t的值.
(2)在整个运动过程中,求DM的长.(用含t的代数式表示)
(3)当DEM与DFN全等时,请直接写出所有满足条件的DN的长.
4、在四边形ABCD中,,点E在直线AB上,且.
(1)如图1,若,,,求AB的长;
(2)如图2,若DE交BC于点F,,求证:.
5、如图,,,E为BC中点,DE平分.
(1)求证:平分;
(2)求证:;
(3)求证:.
6、如图,AB=AD,AC=AE,BC=DE,点E在BC上.
(1)求证:∠EAC=∠BAD;
(2)若∠EAC=42°,求∠DEB的度数.
7、如图,四边形中,,,于点.
(1)如图1,求证:;
(2)如图2,延长交的延长线于点,点在上,连接,且,求证:;
(3)如图3,在(2)的条件下,点在的延长线上,连接,交于点,连接,且,当,时,求的长.
8、如图,已知点E、C在线段BF上,,,.求证:ΔABC≅ΔDEF.
9、下面是“作一个角的平分线”的尺规作图过程.
已知:如图,钝角.
求作:射线OC,使.
作法:如图,
①在射线OA上任取一点D;
②以点О为圆心,OD长为半径作弧,交OB于点E;
③分别以点D,E为圆心,大于长为半径作弧,在内,两弧相交于点C;
④作射线OC.
则OC为所求作的射线.
完成下面的证明.
证明:连接CD,CE
由作图步骤②可知______.
由作图步骤③可知______.
∵,
∴.
∴(________)(填推理的依据).
10、如图,在中,,,点D是内一点,连接CD,过点C作且,连接AD,BE.求证:.
-参考答案-
一、单选题
1、C
【分析】
根据三角形内角和定理确定,然后利用平行线的性质求解即可.
【详解】
解:∵,,
∴,
∵,
∴,
故选:C.
【点睛】
题目主要考查平行线的性质,三角形内角和定理等,熟练掌握运用平行线的性质是解题关键.
2、C
【分析】
延长BD交AC于点E,根据角平分线及垂直的性质可得:,,依据全等三角形的判定定理及性质可得:,,再根据三角形的面积公式可得:SΔABD=SΔADE,SΔBDC=SΔCDE,得出SΔADC=12SΔABC,求解即可.
【详解】
解:如图,延长BD交AC于点E,
∵AD平分,,
∴,,
在和中,
,
∴,
∴,
∴SΔABD=SΔADE,SΔBDC=SΔCDE,
∴SΔADC=12SΔABC=12×18=9,
故选:C.
【点睛】
题目主要考查全等三角形的判定和性质,角平分线的定义等,熟练掌握基础知识,进行逻辑推理是解题关键.
3、A
【分析】
根据题意,结合图形,分两种情况讨论:①AB为等腰直角△ABC底边;②AB为等腰直角△ABC其中的一条腰.
【详解】
解:如图:分情况讨论:
①AB为等腰直角△ABC底边时,符合条件的格点C点有0个;
②AB为等腰直角△ABC其中的一条腰时,符合条件的格点C点有3个.
故共有3个点,
故选:A.
【点睛】
本题考查了等腰三角形的性质和判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.
4、B
【分析】
依据三角形的内角和是180°以及等腰三角形的性质即可解答.
【详解】
解:(180°-80°)÷2
=100°÷2
=50°;
答:底角为50°.
故选:B.
【点睛】
本题主要考查三角形的内角和定理及等腰三角形的两个底角相等的特点.
5、A
【分析】
根据全等三角形的判定方法求解即可.判定三角形全等的方法有:SSS,SAS对各选项进行一一判断即可.
【详解】
解:A、周长相等的两个三角形不一定全等,符合题意;
B、有一腰和底边对应相等的两个等腰三角形根据三边对应相等判定定理可判定全等,不符合题意;
C、三边都对应相等的两个三角形根据三边对应相等判定定理可判定全等,不符合题意;
D、两条直角边对应相等的两个直角三角形根据SAS判定定理可判定全等,不符合题意.
故选:A.
【点睛】
此题考查了全等三角形的判定方法,解题的关键是熟练掌握全等三角形的判定方法.判定三角形全等的方法有:SSS,SAS,AAS,ASA,HL(直角三角形).
6、B
【分析】
AC=BC,∠C=α,DE⊥AC于E,FD⊥AB于D,有,,,即可求得角度.
【详解】
解:由题意知:,
故选B.
【点睛】
本题考查了等腰三角形的性质,几何图形中角度的计算.解题的关键在于确定各角度之间的数量关系.
7、D
【分析】
可以是底角,也可以是顶角,分情况讨论即可.
【详解】
当角为底角时,底角就是,
当角为等腰三角形的顶角时,底角为,
因此这个等腰三角形的底角为或.
故选:D.
【点睛】
本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.
8、B
【分析】
根据全等三角形的性质可得,根据即可求得答案.
【详解】
解:ABC≌DEF,
点B、E、C、F在同一直线上,BC=7,EC=4,
故选B
【点睛】
本题考查了全等三角形的性质,掌握全等三角形的性质是解题的关键.
9、C
【分析】
根据三角形具有稳定性进行求解即可.
【详解】
解:工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是三角形具有稳定性,
故选C.
【点睛】
本题主要考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.
10、C
【分析】
由平行线的性质和角平分线的定义可得,则,同理可得,则,可得答案.
【详解】
解:,
,
平分,
,
,
,
同理,
,
即.
故选:C
【点睛】
本题主要考查了等腰三角形的判定,平行线的性质,角平分线的定义,熟练掌握等腰三角形的判定定理,平行线的性质定理,角平分线的定义是解题的关键.
二、填空题
1、75
【分析】
由题意,是等腰三角形,然后求出的度数,再根据三角形的外角性质,即可求出的度数.
【详解】
解:∵是等腰直角三角形,
∴AC=BC,∠ABC=∠BAC=45°,∠ACB=90°,
∵△BCD是等边三角形,
∴BC=CD,∠BCD=60°,
∴AC=CD,∠ACD=90°+60°=150°,
∴是等腰三角形,
∴,
∴,
∴;
故答案为:75.
【点睛】
本题考查了等边三角形的性质,等腰直角三角形的性质,三角形的外角性质,三角形的内角和定理,解题的关键是掌握所学的知识,正确的求出.
2、答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB
【分析】
根据全等三角形的判定条件求解即可.
【详解】
解:∵∠A=∠D=90°,BC=CB,
∴只需要添加:AC=DB或AB=DC,即可利用HL证明△ABC≌△DCB;添加∠ABC=∠DCB可以利用AAS证明△ABC≌△DCB,
故答案为:答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB.
【点睛】
本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键.
3、4.6
【分析】
在AB上截取BF=AD,连接CF,通过证明△ADC≌△BFC,可得∠ACD=∠BCF,CD=CF,由“SAS”可得△DCE≌△FCE,可得DE=EF,即可求得结果.
【详解】
解:如图,在AB上截取BF=AD,连接CF,
∵CA=CB,∠ACB=120°,
∴∠CAB=∠CBA=30°,
∵∠DAE=60°
∴∠DAC=∠DAE﹣∠CAB=30°
∴∠DAC=∠CBA,且AD=BF,AC=BC
∴△ADC≌△BFC(SAS)
∴∠ACD=∠BCF,CD=CF,
∵∠ACB=∠ACE+∠ECF+∠BCF=∠ACE+∠ECF+∠ACD=∠DCE+∠ECF=120°
∴∠ECF=60°=∠DCE,且CE=CE,DC=CF
∴△DCE≌△FCE(SAS)
∴DE=EF
∴DE=BE﹣BF=BE﹣AD=7﹣2.4=4.6,
故答案为4.6
【点睛】
本题考查了全等三角形的判定和性质,等腰三角形的性质,添加恰当的辅助线构造全等三角形是本题的关键.
4、
【分析】
作BM⊥AC于M,交AD于P,根据等腰三角形的性质得到AD⊥BC,求得点B,C关于AD为对称,得到BP=CP,根据垂线段最短得出CP+EE=BP+EP=BE≥BM,根据数据线的面积公式即可得到结论.
【详解】
解:作BM⊥AC于M,交AD于P,
∵△ABC是等腰三角形,AD是BC边上的中线,
∴AD⊥BC,
∴AD是BC的垂直平分线,
∴点B,C关于AD为对称,
∴BP=CP,
根据垂线段最短得出:CP+EP=BP+EP=BE≥BM,
∵AC=BC=5,
∵S△ABC=BC•AD=AC•BM=12,
∴BM=AD=,
即EP+CP的最小值为,
故答案为:.
【点睛】
本题考查了等腰三角形的性质和轴对称等知识,熟练掌握等腰三角形和轴对称的性质是本题的关键.
5、②
【分析】
根据两边及其夹角对应相等的两个三角形全等,即可求解.
【详解】
解:①若选,是边边角,不能得到形状和大小都确定的;
②若选,是边角边,能得到形状和大小都确定的;
③若选,是边边角,不能得到形状和大小都确定的;
所以乙同学可以选择的条件有②.
故答案为:②
【点睛】
本题主要考查了全等三角形的判定,熟练掌握两边及其夹角对应相等的两个三角形全等是解题的关键.
三、解答题
1、(1)OB=OC(或,或);(2)见解析
【分析】
(1)根据SAS添加OB=OC即可;
(2)由(1)得△AOB≌△DOC,由全等三角形的性质可得结论.
【详解】
解:(1)添加的条件是:OB=OC(或,或)
证明:在和中
所以,△AOB≌△DOC
(2)由(1)知,△AOB≌△DOC
所以,AB=DC.
【点睛】
本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解答本题的关键
2、
【分析】
先由旋转的性质证明再利用等边对等角证明从而可得答案.
【详解】
解: 把△ABC绕点A逆时针旋转得到△ADE,∠B=70°,
【点睛】
本题考查的是旋转的性质,等腰三角形的性质,掌握“旋转前后的对应角相等与等边对等角”是解本题的关键.
3、(1)2;(2)当0≤t≤3时,DM=3-t,当3<t≤8时,DM=t-3;(3)2或1
【分析】
(1)根据题意得: ,解得:,即可求解;
(2)根据题意得:当0≤t≤3时,AM=t,则DM=3-t,当3<t≤8时,DM=t-3,即可求解;
(3)根据ME⊥PQ,NF⊥PQ,可得∠DEM=∠DFN=90°,再由∠ADC=90°,可得∠DME =∠FDN,从而得到当DEM与DFN全等时,DM=DN,根据题意可得M到达点D时, ,M到达点C时, ,N到达点D时, ,N到达点A时,,然后分两种情况:当时和当时,即可求解.
【详解】
解:(1)根据题意得: ,解得:,
即在运动过程中当M、N两点相遇时,t的值为2;
(2)根据题意得:当0≤t≤3时,AM=t,则DM=3-t,
当3<t≤8时,DM=t-3;
(3)∵ME⊥PQ,NF⊥PQ,
∴∠DEM=∠DFN=90°,
∴∠EDM+ ∠DME =90°,
∵∠ADC=90°,
∴∠EDM+∠FDN =90°,
∴∠DME =∠FDN,
∴当DEM与DFN全等时,DM=DN,
∵M到达点D时, ,M到达点C时, ,
N到达点D时, ,N到达点A时,,
当时,DM=3-t,CN=3t,则DN=5-3t,
∴3-t=5-3t,解得:t=1,
∴此时DN=5-3t=2,
当时,DM=3-t,DN=3t-5,
∴3-t=3t-5,解得: ,
∴DN=3t-5=1,
综上所述,当DEM与DFN全等时,所有满足条件的DN的长为2或1.
【点睛】
本题主要考查了全等三角形的判定和性质,动点问题,利用分类讨论思想解答是解题的关键.
4、(1)5;(2)证明见解析
【分析】
(1)推出∠ADE=∠BEC,根据AAS证△AED≌△CEB,推出AE=BC,BE=AD,代入求出即可;
(2)推出∠A=∠EBC,∠AED=∠BCE,根据AAS证△AED≌△BCE,推出AD=BE,AE=BC,即可得出结论.
【详解】
(1)解:∵∠DEC=∠A=90°,
∴∠ADE+∠AED=90°,∠AED+∠BEC=90°,
∴∠ADE=∠BEC,
∵,∠A=90°,
∴∠B+∠A=180°,
∴∠B=∠A=90°,
在△AED和△CEB中
,
∴△AED≌△BCE(AAS),
∴AE=BC=3,BE=AD=2,
∴AB=AE+BE=2+3=5.
(2)证明:∵,
∴∠A=∠EBC,
∵∠DFC=∠AEC,
∠DFC=∠BCE+∠DEC,∠AEC=∠AED+∠DEC,
∴∠AED=∠BCE,
在△AED和△BCE中
,
∴△AED≌△BCE(AAS),
∴AD=BE,AE=BC,
∵BC=AE=AB+BE=AB+AD,
即AB+AD=BC.
【点睛】
本题考查了三角形的外角的性质,全等三角形的性质和判定,平行线的性质等知识点的运用,掌握“利用证明两个三角形全等”是解本题的关键.
5、(1)见解析;(2)见解析;(3)见解析
【分析】
(1)延长DE交AB延长线于F,由∠B=∠C=90°,推出AB∥CD,则∠CDE=∠F,再由DE平分∠ADC,即可推出∠ADF=∠F,得到AD=AF,即△ADF是等腰三角形,然后证明△CDE≌△BFE得到DE=FE,即E是DF的中点,即可证明AE平分∠BAD;
(2)由(1)即可用三线合一定理证明;
(3)由△CDE≌△BFE,得到CD=BF,则AD=AF=AB+BF=AB+CD.
【详解】
解:(1)如图所示,延长DE交AB延长线于F,
∵∠B=∠C=90°,
∴AB∥CD,
∴∠CDE=∠F,
∵DE平分∠ADC,
∴∠CDE=∠ADE,
∴∠ADF=∠F,
∴AD=AF,
∴△ADF是等腰三角形,
∵E是BC的中点,
∴CE=BE,
∴△CDE≌△BFE(AAS),
∴DE=FE,
∴E是DF的中点,
∴AE平分∠BAD;
(2)由(1)得△ADF是等腰三角形,AD=AF,E是DF的中点,
∴AE⊥DE;
(3)∵△CDE≌△BFE,
∴CD=BF,
∴AD=AF=AB+BF=AB+CD.
【点睛】
本题主要考查了平行线的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,熟知相关知识是解题的关键.
6、(1)见解析;(2)42°
【分析】
(1)利用边边边证得△ABC≌△ADE,可得∠BAC=∠DAE,即可求证;
(2)根据等腰三角形的性质,可得∠AEC=∠C=69°,再由△ABC≌△ADE,可得∠AED=∠C=69°, 即可求解.
【详解】
(1)证明:∵AB=AD,AC=AE,BC=DE,
∴△ABC≌△ADE.
∴∠BAC=∠DAE.
∴∠BAC-∠BAE=∠DAE-∠BAE.
即∠EAC=∠BAD;
(2)解:∵AC=AE,∠EAC=42°,
∴∠AEC=∠C= ×(180°-∠EAC)= ×(180°-42°)=69°.
∵△ABC≌△ADE,
∴∠AED=∠C=69°,
∴∠DEB=180°-∠AED-∠C=180°-69°-69°=42°.
【点睛】
本题主要考查了全等三角形的判定和性质,等腰三角形的性质,熟练掌握全等三角形的判定和性质定理,等腰三角形的性质定理是解题的关键.
7、(1)见解析;(2)见解析;(3)2
【分析】
(1)过点B作于点Q,根据AAS证明△得,再证明四边形是矩形得BQ=CG,从而得出结论;
(2) 在GF上截取GH=GE,连接AH,证明AH=FH,GE=GH即可;
(3) 过点A作于点P,在FC上截取,连接,证明得,可证明AC是EH的垂直平分线,再证明和△得可求出,从而可得结论.
【详解】
解:(1)证明:过点B作于点Q,如图1
∵
又,
∴△
∴四边形是矩形
;
(2)在GF上截取GH=GE,连接AH,如图2,
又
(3)过点A作于点P,在FC上截取,连接,如图3,
由(1)、(2)知,,
∵
∴
∵
∴
∴
∴∠
∵
∴∠
∴
∵
∴∠
∴
∴AC是EH的垂直平分线,
∴
∴
又∵
∴
∴∠
∴∠
∵∠,
∴∠
∴
∵
∴
∴
∵∠
∴,即
∴
∵,即
∴
在和中,
AH=AM∠HAB=∠MADAB=AD
∴△
∴
∴
∴
∴
【点睛】
本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.
8、见解析
【分析】
由平行线的性质可证明.再由,可推出.最后即可利用“ASA”直接证明.
【详解】
证明:
,即.
∴在和中,
.
【点睛】
本题考查三角形全等的判定,平行线的性质,线段的和与差.掌握三角形全等的判定条件是解答本题的关键.
9、OE; CE;全等三角形的对应角相等
【分析】
根据圆的半径相等可得OD=OE,CD=CE,再利用SSS可证明,从而根据全等三角形的性质可得结论.
【详解】
证明:连接CD,CE
由作图步骤②可知___OE___.
由作图步骤③可知__CE___.
∵,
∴.
∴(__全等三角形对应角相等__)
故答案为:OE; CE;全等三角形的对应角相等
【点睛】
本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定和性质.
10、证明见解析.
【分析】
先根据角的和差可得,再根据三角形全等的判定定理证出,然后根据全等三角形的性质即可得证.
【详解】
证明:,
,
,
,
,
在和中,,
,
.
【点睛】
本题考查了三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键.
相关试卷
这是一份2021学年第十四章 三角形综合与测试同步练习题,共30页。试卷主要包含了如图,ABC≌DEF,点B,有下列说法,下列说法错误的是,下列命题是真命题的是等内容,欢迎下载使用。
这是一份数学七年级下册第十四章 三角形综合与测试课堂检测,共33页。试卷主要包含了如图,在中,,定理等内容,欢迎下载使用。
这是一份数学沪教版 (五四制)第十四章 三角形综合与测试课后测评,共30页。试卷主要包含了三角形的外角和是等内容,欢迎下载使用。