2020-2021学年第十四章 三角形综合与测试巩固练习
展开
这是一份2020-2021学年第十四章 三角形综合与测试巩固练习,共30页。试卷主要包含了下列说法错误的是,如图,下列三个说法等内容,欢迎下载使用。
沪教版七年级数学第二学期第十四章三角形达标测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列各条件中,不能作出唯一的的是( )
A.,, B.,,
C.,, D.,,
2、已知,,,的相关数据如图所示,则下列选项正确的是( )
A. B. C. D.
3、三根小木棒摆成一个三角形,其中两根木棒的长度分别是和,那么第三根小木棒的长度不可能是( )
A. B. C. D.
4、下列说法错误的是( )
A.任意一个直角三角形都可以被分割成两个等腰三角形
B.任意一个等腰三角形都可以被分割成两个等腰三角形
C.任意一个直角三角形都可以被分割成两个直角三角形
D.任意一个等腰三角形都可以被分割成两个直角三角形
5、如图,,于点,与交于点,若,则等于( )
A.20° B.50° C.70° D.110°
6、如图:将一张长为40cm的长方形纸条按如图所示折叠,若AB=3BC,则纸条的宽为( )
A.12 B.14 C.16 D.18
7、下列三个说法:
①有一个内角是30°,腰长是6的两个等腰三角形全等;
②有一个内角是120°,底边长是3的两个等腰三角形全等;
③有两条边长分别为5,12的两个直角三角形全等.
其中正确的个数有( ).
A.3 B.2 C.1 D.0
8、如图,ABC中,∠ACB=90°,∠ABC=40°.将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是( )
A.50° B.70° C.110° D.120°
9、如图,在△ABC和△DEF中,∠A=∠D,AF=DC,添加下列条件中的一个仍无法证明△ABC≌△DEF的是( )
A.BC=EF B.AB=DE C.∠B=∠E D.∠ACB=∠DFE
10、已知长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将∠BEF对折,点B落在直线EF上的点B′处,得折痕EM,将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN,则图中与∠B′ME互余的角有( )
A.2个 B.3个 C.4个 D.5个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、等腰三角形的两边长分别是和,则它的周长为________.
2、如图,在中,BD和CD分别是和的平分线,EF过点D,且,若,,则EF的长为______.
3、在等腰△ABC中,∠A=40°,则∠B=_____°.
4、如图,与的顶点A、B、D在同一直线上,,,,延长分别交、于点F、G.若,,则______.
5、如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.若AD=3cm,BE=1cm,则DE=_________.
三、解答题(10小题,每小题5分,共计50分)
1、如图,是的角平分线,于点.
(1)用尺规完成以下基本作图:过点作于点,连接交于点.(不写作法,保留作图痕迹)
(2)在(1)中所作的图形中,求证:.
2、已知,如图,AB=AD,∠B=∠D,∠1=∠2=60°.
(1)求证:△ADE≌△ABC;
(2)求证:AE=CE.
3、已知:如图,点B、C在线段AD的异侧,点E、F分别是线段AB、CD上的点,∠AEG=∠AGE,∠C=∠DGC.
(1)求证:AB//CD;
(2)若∠AGE+∠AHF=180°,求证:∠B=∠C;
(3)在(2)的条件下,若∠BFC=4∠C,求∠D的度数.
4、如图,是等边三角形,,分别交AB,AC于点D,E.
(1)求证:是等边三角形;
(2)点F在线段DE上,点G在外,,,求证:.
5、如图,将一副直角三角板的直角顶点C叠放在一起.
(1)如图(1),若∠DCE=33°,则∠BCD= ,∠ACB= .
(2)如图(1),猜想∠ACB与∠DCE的大小有何特殊关系?并说明理由.
(3)如图(2),若是两个同样的直角三角板60°锐角的顶点A重合在一起,则∠DAB与∠CAE的数量关系为 .
6、△ABC中,AB=AC,BD平分∠ABC交AC于点D,从点A作AE∥BC交BD的延长线于点E.
(1)若∠BAC=40°,求∠E的度数;
(2)点F是BE上一点,且FE=BD.取DF的中点H,请问AH⊥BE吗?试说明理由.
7、如图,点D在AC上,BC,DE交于点F,,,.
(1)求证:;
(2)若,求∠CDE的度数.
8、已知:如图,AD是等腰三角形ABC的底边BC上的中线,DE∥AB,交AC于点E.求证:△AED是等腰三角形.
9、如图,和是顶角相等的等腰三角形,BC,DE分别是这两个等腰三角形的底边.求证.
10、如图,在等边△ABC中,点P是BC边上一点,∠BAP=(30°<<60°),作点B关于直线AP的对称点D,连接DC并延长交直线AP于点E,连接BE.
(1)依题意补全图形,并直接写出∠AEB的度数;
(2)用等式表示线段AE,BE,CE之间的数量关系,并证明.
分析:①涉及的知识要素:图形轴对称的性质;等边三角形的性质;全等三角形的判定与性质……
②通过截长补短,利用60°角构造等边三角形,进而构造出全等三角形,从而达到转移边的目的.
请根据上述分析过程,完成解答过程.
-参考答案-
一、单选题
1、B
【分析】
根据三角形全等的判定及三角形三边关系即可得出结果.
【详解】
解:A、,不能组成三角形;
B、根据不可以确定选项中条件能作出唯一三角形;
C、根据可以确定选项中条件能作出唯一三角形;
D、根据可以确定选项中条件能作出唯一三角形;
故答案为:B.
【点睛】
本题考查确定唯一三角形所需要的条件及三角形三边关系,解题关键在于对全等判定条件的理解.
2、D
【分析】
根据三角形内角和定理分别求出三个三角形中未知角的度数,然后依据全等三角形的判定定理,从三个三角形中寻找条件证明全等,即可得出选项.
【详解】
解:,
,
在与ΔFED中,
,
∴≅ΔFED,
∴,
A、B、C三个选项均不能证明,
故选:D.
【点睛】
题目主要考查三角形内角和定理、全等三角形的判定和性质,理解题意,熟练运用全等三角形的判定定理是解题关键.
3、D
【分析】
设第三根木棒长为x厘米,根据三角形的三边关系可得8﹣5<x<8+5,确定x的范围即可得到答案.
【详解】
解:设第三根木棒长为x厘米,由题意得:
8﹣5<x<8+5,即3<x<13,
故选:D.
【点睛】
此题主要考查了三角形的三边关系,要注意三角形形成的条件:任意两边之和>第三边,任意两边之差<第三边.
4、B
【分析】
根据等腰三角形和直角三角形的性质判断各选项即可得出答案.
【详解】
解:、任意一个直角三角形一定能分成两个等腰三角形,本选项正确,不符合题意;
、任意一个等腰三角形不一定能分成两个等腰三角形,本选项错误,符合题意;
、任意一个直角三角形都可以被分割成两个直角三角形,本选项正确,不符合题意;
、任意一个等腰三角形都可以被分割成两个直角三角形,本选项正确,不符合题意;
故选:B.
【点睛】
本题考查了等腰三角形和直角三角形的知识,解题的关键是能判断等腰三角形及直角三角形,可动手操作进行判断.
5、C
【分析】
由与,即可求得的度数,又由,根据两直线平行,同位角相等,即可求得的度数.
【详解】
解:∵,
∴,
∵,
∴,
∵,
∴.
故选:C.
【点睛】
题目主要考查了平行线的性质与垂直的性质、三角形内角和定理,熟练掌握平行线的性质是解题关键.
6、B
【分析】
如图,延长NO交AD的延长线于点P,设BC=x,则AB=3x,利用折叠的性质和等腰直角三角形的性质可表示出纸条的宽MO,NO的长,从而可表示出纸条的长2PN的长,然后根据长方形纸条的长为40,可得到关于x的方程,解方程求出x的值,即可求出纸条的宽.
【详解】
解:如图,延长NO交AD的延长线于点P,
设BC=x,则AB=3x,
∵折叠,
∴AB=BM=CO=CD=PO=3x,
∴纸条的宽为:MO=NO=3x+3x+x=7x,
∴纸条的长为:2PN=2(7x+3x)=20x=40
解得:x=2,
∴纸条的宽NO=7×2=14.
故答案为:B.
【点睛】
此题考查了折叠的性质,等腰直角三角形的性质,一元一次方程应用题,解题的关键是正确分析题目中的等量关系列出方程求解.
7、C
【分析】
根据三角形全等的判定方法,等腰三角形的性质和直角三角形的性质判断即可.
【详解】
解:①当一个是底角是30°,一个是顶角是30°时,两三角形就不全等,故本选项错误;
②有一个内角是120°,底边长是3的两个等腰三角形全等,本选项正确;
③当一条直角边为12,一条斜边为12时,两个直角三角形不全等,故本选项错误;正确的只有1个,
故选:C.
【点睛】
本题考查了全等三角形的判定定理,等腰三角形的性质和直角三角形的性质,熟练掌握全等三角形的判定定理是解题的关键.
8、B
【分析】
根据旋转可得,,得.
【详解】
解:,,
,
将绕点逆时针旋转得到△,使点的对应点恰好落在边上,
,,
.
故选:B.
【点睛】
本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.
9、A
【分析】
根据AF=DC求出AC=DF,再根据全等三角形的判定定理逐个判断即可.
【详解】
解:∵AF=DC,
∴AF+FC=DC+FC,
即AC=DF,
A、BC=EF,AC=DF,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,故本选项符合题意;
B、AB=DE,∠A=∠D,AC=DF,符合全等三角形的判定定理SAS,能推出△ABC≌△DEF,故本选项不符合题意;
C.∠B=∠E,∠A=∠D,AC=DF,符合全等三角形的判定定理AAS,能推出△ABC≌△DEF,故本选项不符合题意;
D.∠ACB=∠DFE,AC=DF,∠A=∠D,符合全等三角形的判定定理ASA,能推出△ABC≌△DEF,故本选项不符合题意;
故选:A.
【点睛】
本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.
10、C
【分析】
先由翻折的性质得到∠AEN=∠A′EN,∠BEM=∠B′EM,从而可知∠NEM=×180°=90°,然后根据余角的定义找出∠B′ME的余角即可.
【详解】
解:由翻折的性质可知:∠AEN=∠A′EN,∠BEM=∠B′EM.
∠NEM=∠A′EN+∠B′EM=∠AEA′+∠B′EB=×180°=90°.
由翻折的性质可知:∠MB′E=∠B=90°.
由直角三角形两锐角互余可知:∠B′ME的一个余角是∠B′EM.
∵∠BEM=∠B′EM,
∴∠BEM也是∠B′ME的一个余角.
∵∠NBF+∠B′EM=90°,
∴∠NEF=∠B′ME.
∴∠ANE、∠A′NE是∠B′ME的余角.
综上所述,∠B′ME的余角有∠ANE、∠A′NE、∠B′EM、∠BEM.
故选:C.
【点睛】
本题主要考查的是翻折的性质、余角的定义,掌握翻折的性质是解题的关键.
二、填空题
1、22
【分析】
分两种情况讨论:当腰长为时, 当腰长为时,再结合三角形的三边关系,从而可得答案.
【详解】
解: 等腰三角形的两边长分别是和,
当腰长为时,此时 不符合题意,舍去,
当腰长为时,此时 符合题意,
所以三角形的周长为:
故答案为:
【点睛】
本题考查的是等腰三角形的定义,三角形的三边关系,掌握“等腰三角形的两腰相等,再分情况讨论”是解本题的关键.
2、7
【分析】
根据角平分线的定义和平行线的性质证明∠EBD=∠EDB,∠FDC=∠FCD,得到BE=DE,CF=DF,即可求解.
【详解】
解:∵EF∥BC,
∴∠EDB=∠DBC,∠FDC=∠DCB,
又∵BD和CD分别是∠ABC和∠ACB的平分线,
∴∠EBD=∠DBC,∠FCD=∠DCB,
∴∠EBD=∠EDB,∠FDC=∠FCD,
∴BE=DE,CF=DF,
又∵BE=3,CF=4,
∴EF=DE+DF=BE+CF=7.
故答案为:7.
【点睛】
本题主要考查了平行线的性质,角平分的定义,等腰三角形的性质与判定,熟知相关知识是解题的关键.
3、40°或70°或100°
【分析】
本题要分两种情况讨论:当∠A=40°为顶角;当∠A=40°为底角时,则∠B为底角时或顶角.然后求出∠B.
【详解】
分两种情况讨论:
当∠A=40°为顶角时,;
当∠A=40°为底角时,∠B为底角时∠B=∠A=40°;∠B为顶角时∠B=180°−∠A−∠C=180°−40°−40°=100°.
故答案为:40°或70°或100°.
【点睛】
本题考查等腰三角形的性质,解题的关键是掌握等腰三角形的性质,分情况讨论问题.
4、
【分析】
先证明△ABC≌△EDB,可得∠E=,然后利用三角形外角的性质求解.
【详解】
解:∵,
∴∠ABC=∠D,
在△ABC和△EDB中
,
∴△ABC≌△EDB,
∴∠E=,
∴,,
∴∠EGF=30°+50°=80°,
∴80°+30°=110°,
故答案为:110°.
【点睛】
本题考查了平行线的性质,全等三角形的判定与性质,以及三角形外角的性质,熟练掌握三角形的外角等于不相邻的两个内角和是解答本题的关键.
5、2cm
【分析】
易证∠CAD=∠BCE,即可证明BEC≌△DAC,可得CD=BE,CE=AD,根据DE=CE-CD,即可解题.
【详解】
解:∵∠ACB=90°,
∴∠BCE+∠DCA=90°.
∵AD⊥CE,
∴∠DAC+∠DCA=90°.
∴∠BCE=∠DAC,
在△BEC和△DAC中,
∵∠BCE=∠DAC,∠BEC=∠CDA=90°.BC=AC,
∴△BEC≌△DAC(AAS),
∴CE=AD=3cm,CD=BE=1cm,
DE=CE-CD=3-1=2 cm.
故答案是:2cm.
【点睛】
此题是三角形综合题,主要考查了全等三角形的判定,全等三角形对应边相等的性质,本题中求证△CDA≌△BEC是解题的关键.
三、解答题
1、(1)见解析;(2)见解析.
【分析】
(1)以点D为圆心,适当长为半径,作弧,交AC于两点,再分别以这两点为圆心,适当长为半径作弧,连接两条弧的交点所在的直线,该直线与AC的交点即为点F,连接交于点;
(2)利用角平分线性质可得,由此证明,得到,继而证明,证得即可解题.
【详解】
解:(1)如图,点F、G即为所求作的点;
(2)是的角平分线,,,
【点睛】
本题考查角平分线的性质、全等三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.
2、(1)见解析;(2)见解析
【分析】
(1)根据∠1=∠2可推出∠DAE=∠BAC,然后结合全等三角形的判定定理进行证明;
(2)由全等三角形的性质可得AE=AC,结合∠2=60°可推出△AEC为等边三角形,据此证明.
【详解】
(1)证明:∵∠1=∠2
∴∠1+=∠2+
即∠DAE=∠BAC
在△ADE和△ABC中
∴△ADE≌△ABC(ASA)
(2)证明:∵△ADE≌△ABC
∴AE=AC
又∵∠2=60°
∴△AEC为等边三角形
∴AE=CE
【点睛】
此题考查了全等三角形的性质和判定,等边三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定方法,等边三角形的性质和判定方法.
3、(1)见解析;(2)见解析;(3)108°
【分析】
(1)根据对顶角相等结合已知条件得出∠AEG=∠C,根据内错角相等两直线平行即可证得结论;
(2)由∠AGE+∠AHF=180°等量代换得∠DGC+∠AHF=180°可判断EC//BF,两直线平行同位角相等得出∠B=∠AEG,结合(1)得出结论;
(3)由(2)证得EC//BF,得∠BFC+∠C=180°,求得∠C的度数,由三角形内角和定理求得∠D的度数.
【详解】
证明:(1)∵∠AEG=∠AGE,∠C=∠DGC,∠AGE=∠DGC
∴∠AEG=∠C
∴AB//CD
(2)∵∠AGE=∠DGC,∠AGE+∠AHF=180°
∴∠DGC+∠AHF=180°
∴EC//BF
∴∠B=∠AEG
由(1)得∠AEG=∠C
∴∠B=∠C
(3)由(2)得EC//BF
∴∠BFC+∠C=180°
∵∠BFC=4∠C
∴∠C=36°
∴∠DGC=36°
∵∠C+∠DGC+∠D=180°
∴∠D=108°
【点睛】
此题考查了平行线的判定与性质,三角形内角和定理,熟记“内错角相等,两直线平行”、“同旁内角互补,两直线平行”及“两直线平行,同旁内角互补”是解题的关键.
4、(1)见详解;(2)见详解
【分析】
(1)由题意易得,然后根据平行线的性质可得,进而问题可求证;
(2)连接AG,由题意易得AB=AC,然后可知△ABF≌△ACG,则有AF=AG,进而可得∠FAG=60°,最后问题可求证.
【详解】
证明:(1)∵是等边三角形,
∴,
∵DE∥BC,
∴,
∴,
∴是等边三角形;
(2)连接AG,如图所示:
∵是等边三角形,
∴,AB=AC,
∵,,
∴△ABF≌△ACG(SAS),
∴,
∵,
∴,
∴是等边三角形,
∴.
【点睛】
本题主要考查全等三角形及等边三角形的性质与判定,熟练掌握全等三角形及等边三角形的性质与判定是解题的关键.
5、(1)57°,147°;(2)∠ACB=180°-∠DCE,理由见解析;(3)∠DAB+∠CAE=120°
【分析】
(1)根据角的和差定义计算即可.
(2)利用角的和差定义计算即可.
(3)利用特殊三角板的性质,角的和差定义即可解决问题.
【详解】
解:(1)由题意,
;
;
故答案为:57°,147°.
(2)∠ACB=180°-∠DCE,
理由如下:
∵ ∠ACE=90°-∠DCE,∠BCD=90°-∠DCE,
∴ ∠ACB=∠ACE+∠DCE+∠BCD
=90°-∠DCE+∠DCE+90°-∠DCE
=180°-∠DCE.
(3)结论:∠DAB+∠CAE=120°.
理由如下:
∵∠DAB+∠CAE=∠DAE+∠CAE+∠BAC+∠CAE=∠DAC+∠EAB,
又∵∠DAC=∠EAB=60°,
∴∠DAB+∠CAE=60°+60°=120°.
故答案为:∠DAB+∠CAE=120°.
【点睛】
本题考查三角形的内角和定理,角的和差定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
6、(1)∠E=35°;(2)AH⊥BE.理由见解析.
【分析】
(1)根据等腰三角形两底角相等,已知顶角,可以求出底角,再根据角平分线的定义求出∠CBD的度数,最后根据两直线平行,内错角相等求出;
(2)由“SAS”可证△ABD≌△AEF,可得AD=AF,由等腰三角形的性质可求解.
【详解】
解:(1)∵AB=AC,
∴∠ABC=∠ACB,
∵∠BAC=40°,
∴∠ABC=(180°-∠BAC)=70°,
∵BD平分∠ABC,
∴∠CBD=∠ABC=35°,
∵AE∥BC,
∴∠E=∠CBD=35°;
(2)∵BD平分∠ABC,∠E=∠CBD,
∴∠CBD=∠ABD=∠E,
∴AB=AE,
在△ABD和△AEF中,
,
∴△ABD≌△AEF(SAS),
∴AD=AF,
∵点H是DF的中点,
∴AH⊥BE.
【点睛】
本题考查了全等三角形的判定和性质,等腰三角形的性质,证明三角形全等是解题的关键.
7、
(1)证明见解析;
(2)∠CDE=20°.
【分析】
(1)由“SAS”可证△ABC≌△DBE;
(2)由全等三角形的性质可得∠C=∠E,由三角形的外角性质可求解.
(1)
证明:∵∠ABD=∠CBE,
∴∠ABD+∠DBC=∠CBE+∠DBC,
即:∠ABC=∠DBE,
在△ABC和△DBE中,
,
∴△ABC≌△DBE(SAS);
(2)
解:由(1)可知:△ABC≌△DBE,
∴∠C=∠E,
∵∠DFB=∠C+∠CDE,
∠DFB=∠E+∠CBE,
∴∠CDE=∠CBE,
∵∠ABD=∠CBE=20°,
∴∠CDE=20°.
【点睛】
本题考查了全等三角形的判定和性质,三角形的外角性质,证明三角形全等是解题的关键.
8、见解析
【分析】
根据等腰三角形的性质得到∠BAD=∠CAD,根据平行线的性质得到∠ADE=∠BAD,等量代换得到∠ADE=∠CAD于是得到结论.
【详解】
解:∵△ABC是等腰三角形,AB=AC,AD是底边BC上的中线,
∴∠BAD=∠CAD,
∵DE∥AB,
∴∠ADE=∠BAD,
∴∠ADE=∠CAD,
∴AE=ED,
∴△AED是等腰三角形.
【点睛】
本题主要考查等腰三角形的判定与性质以及平行线的性质,熟练掌握等腰三角形的判定和性质定理是解题的关键.
9、见解析
【分析】
由和是顶角相等的等腰三角形,得出知、、,证即可得证.
【详解】
解:和是顶角相等的等腰三角形,得出,
,,,
在和中,
,
,
.
【点睛】
本题主要考查全等三角形的判定与性质,解题的关键是熟练掌握等腰三角形的性质与全等三角形的判定和性质.
10、(1)图见解析,∠AEB=60°;(2)AE=BE+CE,证明见解析
【分析】
(1)依题意补全图形,如图所示:然后连接AD,先求出,然后根据轴对称的性质得到,AD=AB=AC,∠AEC=∠AEB,求出,即可求出,再由进行求解即可;
(2)如图,在AE上截取EG=BE,连接BG.先证明△BGE是等边三角形,得到BG=BE=EG,∠GBE=60°. 再证明∠ABG=∠CBE,即可证明△ABG≌△CBE得到AG=CE,则AE=EG+AG=BE+CE.
【详解】
解:(1)依题意补全图形,如图所示:连接AD,
∵△ABC是等边三角形,
∴∠BAC=60°,AB=AC,
∵,
∴,
∵B、D关于AP对称,
∴,AD=AB=AC,∠AEC=∠AEB,
∴,
∴,
∴,
∴
∴∠AEB=60°.
(2)AE=BE+CE.
证明:如图,在AE上截取EG=BE,连接BG.
∵∠AEB=60°,
∴△BGE是等边三角形,
∴BG=BE=EG,∠GBE=60°.
∵△ABC是等边三角形,
∴AB=BC,∠ABC=60°,
∴∠ABG+∠GBC=∠GBC+∠CBE=60°,
∴∠ABG=∠CBE.
在△ABG和△CBE中,
∴△ABG≌△CBE(SAS),
∴AG=CE,
∴AE=EG+AG=BE+CE.
【点睛】
本题主要考查了全等三角形的性质,等边三角形的性质与判定,轴对称的性质,等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质等等,熟知相关知识是解题的关键
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试习题,共32页。试卷主要包含了如图,点D等内容,欢迎下载使用。
这是一份数学七年级下册第十四章 三角形综合与测试同步练习题,共32页。试卷主要包含了下列说法错误的是,如图,为估计池塘岸边A等内容,欢迎下载使用。
这是一份2020-2021学年第十四章 三角形综合与测试习题,共34页。试卷主要包含了尺规作图,如图,ABC≌DEF,点B,下列命题是真命题的是等内容,欢迎下载使用。