初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课堂检测
展开
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课堂检测,共32页。试卷主要包含了如图,AB=AC,点D等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、以下列各组线段为边,能组成三角形的是( )
A.3cm,4cm,5cmB.3cm,3cm,6cmC.5cm,10cm,4cmD.1cm,2cm,3cm
2、下列三个说法:
①有一个内角是30°,腰长是6的两个等腰三角形全等;
②有一个内角是120°,底边长是3的两个等腰三角形全等;
③有两条边长分别为5,12的两个直角三角形全等.
其中正确的个数有( ).
A.3B.2C.1D.0
3、如图,点F,C在BE上,AC=DF,BF=EC,AB=DE,AC与DF相交于点G,则与2∠DFE相等的是( )
A.∠A+∠DB.3∠BC.180°﹣∠FGCD.∠ACE+∠B
4、已知等腰三角形有一个角为50°,则这个等腰三角形的底角度数是( ).
A.65°B.65°或80°C.50°或80°D.50°或65°
5、如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论:①△BDF是等腰三角形;②DE=BD+CE;③若∠A=50°,则∠BFC=115°;④DF=EF.其中正确的有( )
A.1个B.2个C.3个D.4个
6、如图,在△ABC中,BD平分∠ABC,∠C=2∠CDB,AB=12,CD=3,则△ABC的周长为( )
A.21B.24C.27D.30
7、如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形.他的依据是( )
A.B.C.D.
8、如图,是等边三角形,点在边上,,则的度数为( ).
A.25°B.60°C.90°D.100°
9、如图,AB=AC,点D、E分别在AB、AC上,补充一个条件后,仍不能判定△ABE≌△ACD的是( )
A.∠B=∠CB.AD=AEC.BE=CDD.∠AEB=∠ADC
10、如图,在中,,,AD平分交BC于点D,在AB上截取,则的度数为( )
A.30°B.20°C.10°D.15°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,已知△ABC是等边三角形,边长为3,G是三角形的重心,那么GA =______.
2、如图,在正方形网格中,∠BAC______∠DAE.(填“>”、“=”或“<”)
3、如图,已知AB=3,AC=CD=1,∠D=∠BAC=90°,则△ACE的面积是 _____.
4、等腰,,底角为70°,点在边上,将分成两个三角形,当这两个三角形有一个是以为腰的等腰三角形时,则的度数是______.
5、如图,点E,F分别为线段BC,DB上的动点,BE=DF.要使AE+AF最小值,若用作图方式确定E,F,则步骤是 _____.
三、解答题(10小题,每小题5分,共计50分)
1、在四边形ABCD中,,点E在直线AB上,且.
(1)如图1,若,,,求AB的长;
(2)如图2,若DE交BC于点F,,求证:.
2、如图,△ABC中,AB=AC,D为BC边的中点,AF⊥AD,垂足为A.求证:∠1=∠2
3、直线l经过点A,在直线l上方,.
(1)如图1,,过点B,C作直线l的垂线,垂足分别为D、E.求证:
(2)如图2,D,A,E三点在直线l上,若(为任意锐角或钝角),猜想线段DE、BD、CE有何数量关系?并给出证明.
(3)如图3,过点B作直线l上的垂线,垂足为F,点D是BF延长线上的一个动点,连结AD,作,使得,连结DE,CE.直线l与CE交于点G.求证:G是CE的中点.
4、如图,在四边形ABCD中,点E在BC上,连接DE、AC相交于点F,∠BAE=∠CAD,AB=AE,AD=AC.
(1)求证:∠DEC=∠BAE;
(2)如图2,当∠BAE=∠CAD=30°,AD⊥AB时,延长DE、AB交于点G,请直接写出图中除△ABE、△ADC以外的等腰三角形.
5、阅读以下材料,并按要求完成相应的任务:
任务:
如图3,在四边形中,,,,以为顶点的,、与、边分别交于、两点.请参照阅读材料中的解题方法,你认为结论是否依然成立,若成立,请写出证明过程;若不成立,请说明理由.
6、△ABC中,AB=AC,BD平分∠ABC交AC于点D,从点A作AE∥BC交BD的延长线于点E.
(1)若∠BAC=40°,求∠E的度数;
(2)点F是BE上一点,且FE=BD.取DF的中点H,请问AH⊥BE吗?试说明理由.
7、如图,将△ABC绕点A逆时针旋转得到△ADE,点D在BC上,已知∠B=70°,求∠CDE的大小.
8、已知:如图,点D为BC的中点,,求证:是等腰三角形.
9、如图,AD是的高,CE是的角平分线.若,,求的度数.
10、如图,已知△ABC≌△DEB,点E在AB上,AC与BD交于点F,AB=6,BC=3,∠C=55°,∠D=25°.
(1)求AE的长度;
(2)求∠AED的度数.
-参考答案-
一、单选题
1、A
【分析】
三角形的任意两条之和大于第三边,任意两边之差小于第三边,根据原理再分别计算每组线段当中较短的两条线段之和,再与最长的线段进行比较,若和大于最长的线段的长度,则三条线段能构成三角形,否则,不能构成三角形,从而可得答案.
【详解】
解: 所以以3cm,4cm,5cm为边能构成三角形,故A符合题意;
所以以3cm,3cm,6cm为边不能构成三角形,故B不符合题意;
所以以5cm,10cm,4cm为边不能构成三角形,故C不符合题意;
所以以1cm,2cm,3cm为边不能构成三角形,故D不符合题意;
故选A
【点睛】
本题考查的是三角形的三边之间的关系,掌握“利用三角形三边之间的关系判定三条线段能否组成三角形”是解本题的关键.
2、C
【分析】
根据三角形全等的判定方法,等腰三角形的性质和直角三角形的性质判断即可.
【详解】
解:①当一个是底角是30°,一个是顶角是30°时,两三角形就不全等,故本选项错误;
②有一个内角是120°,底边长是3的两个等腰三角形全等,本选项正确;
③当一条直角边为12,一条斜边为12时,两个直角三角形不全等,故本选项错误;正确的只有1个,
故选:C.
【点睛】
本题考查了全等三角形的判定定理,等腰三角形的性质和直角三角形的性质,熟练掌握全等三角形的判定定理是解题的关键.
3、C
【详解】
由题意根据等式的性质得出BC=EF,进而利用SSS证明△ABC与△DEF全等,利用全等三角形的性质得出∠ACB=∠DFE,最后利用三角形内角和进行分析解答.
【分析】
解:∵BF=EC,
∴BF+FC=EC+FC,
∴BC=EF,
在△ABC与△DEF中,
,
∴△ABC≌△DEF(SSS),
∴∠ACB=∠DFE,
∴2∠DFE=180°﹣∠FGC,
故选:C.
【点睛】
本题考查全等三角形的判定与性质,其中全等三角形的判定方法有:SSS;SAS;ASA;AAS;以及HL(直角三角形的判定方法).
4、D
【分析】
可以是底角,也可以是顶角,分情况讨论即可.
【详解】
当角为底角时,底角就是,
当角为等腰三角形的顶角时,底角为,
因此这个等腰三角形的底角为或.
故选:D.
【点睛】
本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.
5、C
【分析】
根据平行线的性质和角平分线的定义以及等腰三角形的判定和性质逐个判定即可解答.
【详解】
解:∵BF是∠AB的角平分线,
∴∠DBF=∠CBF,
∵DE∥BC,
∴∠DFB=∠CBF,
∴∠DBF=∠DFB,
∴BD=DF,
∴△BDF是等腰三角形;故①正确;
同理,EF=CE,
∴DE=DF+EF=BD+CE,故②正确;
∵∠A=50°,
∴∠ABC+∠ACB=130°,
∵BF平分∠ABC,CF平分∠ACB,
∴,
∴∠FBC+∠FCB=(∠ABC+∠ACB)=65°,
∴∠BFC=180°﹣65°=115°,故③正确;
当△ABC为等腰三角形时,DF=EF,
但△ABC不一定是等腰三角形,
∴DF不一定等于EF,故④错误.
故选:C.
【点睛】
本题主要考查等腰三角形的性质、角平分线的定义及平行线的性质等知识点,根据两直线平行、内错角相等以及等角对等边来判定等腰三角形是解答本题的关键.
6、C
【分析】
根据题意在AB上截取BE=BC,由“SAS”可证△CBD≌△EBD,可得∠CDB=∠BDE,∠C=∠DEB,可证∠ADE=∠AED,可得AD=AE,进而即可求解.
【详解】
解:如图,在AB上截取BE=BC,连接DE,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
在△CBD和△EBD中,
,
∴△CBD≌△EBD(SAS),
∴∠CDB=∠BDE,∠C=∠DEB,
∵∠C=2∠CDB,
∴∠CDE=∠DEB,
∴∠ADE=∠AED,
∴AD=AE,
∴△ABC的周长=AD+AE+BE+BC+CD=AB+AB+CD=27,
故选:C.
【点睛】
本题考查全等三角形的判定和性质以及等腰三角形的性质,注意掌握添加恰当辅助线构造全等三角形是解题的关键.
7、C
【分析】
根据题意,可知仍可辨认的有1条边和2个角,且边为两角的夹边,即可根据来画一个完全一样的三角形
【详解】
根据题意可得,已知一边和两个角仍保留,且边为两角的夹边,
根据两个三角形对应的两角及其夹边相等,两个三角形全等,即
故选C
【点睛】
本题考查了三角形全等的性质与判定,掌握三角形的判定方法是解题的关键.
8、D
【分析】
由等边三角形的性质及三角形外角定理即可求得结果.
【详解】
∵是等边三角形
∴∠C=60°
∴∠ADB=∠DBC+∠C=40°+60°=100°
故选:D
【点睛】
本题考查了等边三角形的性质、三角形外角的性质,掌握这两个性质是关键.
9、C
【分析】
根据全等三角形的判定定理进行判断即可.
【详解】
解:根据题意可知:AB=AC,,
若,则根据可以证明△ABE≌△ACD,故A不符合题意;
若AD=AE,则根据可以证明△ABE≌△ACD,故B不符合题意;
若BE=CD,则根据不可以证明△ABE≌△ACD,故C符合题意;
若∠AEB=∠ADC,则根据可以证明△ABE≌△ACD,故D不符合题意;
故选:C.
【点睛】
本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解本题的关键.
10、B
【分析】
利用已知条件证明△ADE≌△ADC(SAS),得到∠DEA=∠C,根据外角的性质可求的度数.
【详解】
解:∵AD是∠BAC的平分线,
∴∠EAD=∠CAD
在△ADE和△ADC中,
,
∴△ADE≌△ADC(SAS),
∴∠DEA=∠C,
∵,∠DEA=∠B +,
∴;
故选:B
【点睛】
本题考查了全等三角形的性质与判定,解决本题的关键是证明△ADE≌△ADC.
二、填空题
1、
【分析】
延长AG交BC于D,根据重心的概念得到AD⊥BC,BD=DC=BC=,根据勾股定理求出AD,根据重心的概念计算即可.
【详解】
解:延长AG交BC于D,
∵G是三角形的重心,
∴AD⊥BC,BD=DC=BC=,
由勾股定理得,AD=,
∴GA=AD=,
故答案为:.
【点睛】
本题考查的是等边三角形的性质、三角形的重心的概念,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.
2、
【分析】
找到点,连接(见解析),根据等腰直角三角形的性质、网格特点即可得.
【详解】
解;如图,找到点,连接,
则是等腰直角三角形,
,
又是等腰直角三角形,
,
故答案为:.
【点睛】
本题考查了等腰直角三角形、角的大小比较,正确找出点是解题关键.
3、##
【分析】
先根据三角形全等的判定定理证出,再根据全等三角形的性质可得,然后利用三角形的面积公式即可得.
【详解】
解:在和中,,
,
,
则的面积是,
故答案为:.
【点睛】
本题考查了三角形全等的判定定理与性质,熟练掌握三角形全等的判定方法是解题关键.
4、100°或110°
【分析】
画出图形,分两种情况考虑:AD=BD时,则∠ABD=∠A,由三角形内角和可求得∠ADB的度数;BD=BC时,则∠BDC=∠C=70°,从而可求得∠ADB的度数.
【详解】
∵AB=AC,底角为70°
∴∠ABC=∠C=70°,∠A=180°−(∠ABC+∠C)=40°
当AD=BD时,如图1,则∠ABD=∠A=40°
∴∠ADB=180°−(∠A+∠ABD)=180°−80°=100°
当BD=BC时,如图2,则∠BDC=∠C=70°
∴∠ADB=180°−∠BDC=180°−70°=110°
综上所述,∠ADB的度数为100°或110°
【点睛】
本题考查了等腰三角形的性质、三角形内角和定理等知识,涉及分类讨论,关键是等腰三角形的性质,另外要注意分类讨论.
5、①连接,作;②以点为圆心、长为半径画弧,交于点;③连接交于点;④以点为圆心、长为半径画弧,交于点
【分析】
按照①连接,作;②以点为圆心、长为半径画弧,交于点;③连接交于点;④以点为圆心、长为半径画弧,交于点的步骤作图即可得.
【详解】
解:步骤是①连接,作;
②以点为圆心、长为半径画弧,交于点;
③连接交于点;
④以点为圆心、长为半径画弧,交于点;
如图,点即为所求.
故答案为:①连接,作;②以点为圆心、长为半径画弧,交于点;③连接交于点;④以点为圆心、长为半径画弧,交于点.
【点睛】
本题考查了作一个角等于已知角、两点之间线段最短、作线段、全等三角形的判定与性质等知识点,熟练掌握尺规作图的方法是解题关键.
三、解答题
1、(1)5;(2)证明见解析
【分析】
(1)推出∠ADE=∠BEC,根据AAS证△AED≌△CEB,推出AE=BC,BE=AD,代入求出即可;
(2)推出∠A=∠EBC,∠AED=∠BCE,根据AAS证△AED≌△BCE,推出AD=BE,AE=BC,即可得出结论.
【详解】
(1)解:∵∠DEC=∠A=90°,
∴∠ADE+∠AED=90°,∠AED+∠BEC=90°,
∴∠ADE=∠BEC,
∵,∠A=90°,
∴∠B+∠A=180°,
∴∠B=∠A=90°,
在△AED和△CEB中
,
∴△AED≌△BCE(AAS),
∴AE=BC=3,BE=AD=2,
∴AB=AE+BE=2+3=5.
(2)证明:∵,
∴∠A=∠EBC,
∵∠DFC=∠AEC,
∠DFC=∠BCE+∠DEC,∠AEC=∠AED+∠DEC,
∴∠AED=∠BCE,
在△AED和△BCE中
,
∴△AED≌△BCE(AAS),
∴AD=BE,AE=BC,
∵BC=AE=AB+BE=AB+AD,
即AB+AD=BC.
【点睛】
本题考查了三角形的外角的性质,全等三角形的性质和判定,平行线的性质等知识点的运用,掌握“利用证明两个三角形全等”是解本题的关键.
2、见详解.
【分析】
根据等腰三角形三合一性质以及等边对等角性质得出AD⊥BC,∠B=∠C,根据AF⊥AD,利用在同一平面内垂直同一直线的两直线平行得出AF∥BC,利用平行线性质得出∠1=∠B,∠2=∠C即可.
【详解】
证明:∵△ABC中,AB=AC,D为BC边的中点,
∴AD⊥BC,∠B=∠C,
∵AF⊥AD,
∴AF∥BC,
∴∠1=∠B,∠2=∠C,
∴∠1=∠2.
【点睛】
本题考查等腰三角形性质,平行线的判定与性质,掌握等腰三角形性质,平行线的判定与性质是解题关键.
3、(1)见解析;(2)猜想:,见解析;(3)见解析
【分析】
(1)先证明和,再根据证明即可;
(2)根据AAS证明得,,进一步可得出结论;
(3)分别过点C、E作,,同(1)可证,,得出CM=EN,证明得,从而可得结论.
【详解】
解:(1)证明:∵,,
∴,
∴
∵,
∴
∴,
在与中
,
∴
(2)猜想:,
∵
∴,
∴,
在与中
∴,
∴,,
∴
(3)分别过点C、E作,,
同(1)可证,,
∴,
∴,
∵,,
∴
在与中
∴,
∴,
∴G为CE的中点.
【点睛】
本题考查了全等三角形的判定与性质、垂线的定义、角的互余关系,证得△ABD≌△CAE是解决问题的关键.
4、(1)见解析;(2)△AEF、△ADG、△DCF、△ECD
【分析】
(1)根据已知条件得到∠BAE=∠CAD,根据全等三角形的性质得到∠AED=∠ABC,根据等腰三角形的性质得到∠ABC=∠AEB,于是得到结论;
(2)根据等腰三角形的判定定理即可得到结论.
【详解】
证明:(1)如图1,∵∠BAE=∠CAD,
∴∠BAE+∠CAE=∠CAD+∠CAE,
即∠BAC=∠EAD,
在△AED与△ABC中,
∴△AED≌△ABC,
∴∠AED=∠ABC,
∵∠BAE+∠ABC+∠AEB=180°,
∠CED+∠AED+∠AEB=180°,
∵AB=AE,
∴∠ABC=∠AEB,
∴∠BAE+2∠AEB=180°,
∠CED+2∠AEB=180°,
∴∠DEC=∠BAE;
(2)解:如图2,
①∵∠BAE=∠CAD=30°,
∴∠ABC=∠AEB=∠ACD=∠ADC=75°,
由(1)得:∠AED=∠ABC=75°,
∠DEC=∠BAE=30°,
∵AD⊥AB,
∴∠BAD=90°,
∴∠CAE=30°,
∴∠AFE=180°−30°−75°=75°,
∴∠AEF=∠AFE,
∴△AEF是等腰三角形,
②∵∠BEG=∠DEC=30°,∠ABC=75°,
∴∠G=45°,
在Rt△AGD中,∠ADG=45°,
∴△ADG是等腰直角三角形,
③∠CDF=75°−45°=30°,
∴∠DCF=∠DFC=75°,
∴△DCF是等腰直角三角形;
④∵∠CED=∠EDC=30°,
∴△ECD是等腰三角形.
【点睛】
本题考查了全等三角形的判定与性质,等腰直角三角形的判定,等腰三角形的判定和性质,熟练掌握全等三角形的判定与性质是解题的关键.
5、成立,证明见解析
【分析】
根据阅读材料将△ADF旋转120°再证全等即可求得EF= BE+DF .
【详解】
解:成立.
证明:将绕点顺时针旋转,得到,
,,,,,
,、、三点共线,
.
,,,
,
.
【点睛】
本题考查旋转中的三角形全等,读懂材料并运用所学的全等知识是本题关键.
6、(1)∠E=35°;(2)AH⊥BE.理由见解析.
【分析】
(1)根据等腰三角形两底角相等,已知顶角,可以求出底角,再根据角平分线的定义求出∠CBD的度数,最后根据两直线平行,内错角相等求出;
(2)由“SAS”可证△ABD≌△AEF,可得AD=AF,由等腰三角形的性质可求解.
【详解】
解:(1)∵AB=AC,
∴∠ABC=∠ACB,
∵∠BAC=40°,
∴∠ABC=(180°-∠BAC)=70°,
∵BD平分∠ABC,
∴∠CBD=∠ABC=35°,
∵AE∥BC,
∴∠E=∠CBD=35°;
(2)∵BD平分∠ABC,∠E=∠CBD,
∴∠CBD=∠ABD=∠E,
∴AB=AE,
在△ABD和△AEF中,
,
∴△ABD≌△AEF(SAS),
∴AD=AF,
∵点H是DF的中点,
∴AH⊥BE.
【点睛】
本题考查了全等三角形的判定和性质,等腰三角形的性质,证明三角形全等是解题的关键.
7、
【分析】
先由旋转的性质证明再利用等边对等角证明从而可得答案.
【详解】
解: 把△ABC绕点A逆时针旋转得到△ADE,∠B=70°,
【点睛】
本题考查的是旋转的性质,等腰三角形的性质,掌握“旋转前后的对应角相等与等边对等角”是解本题的关键.
8、证明见解析
【分析】
过点D作,交AB于点M,过点D做,交AC于点N,根据角平分线性质,得;根据全等三角形的性质,通过证明,通过证明,得,结合等腰三角形的性质,即可完成证明.
【详解】
如下图,过点D作,交AB于点M,过点D做,交AC于点N
∵
∴
直角和直角中
∴
∴
∵点D为BC的中点,
∴
直角和直角中
∴
∴
∵,
∴,即是等腰三角形.
【点睛】
本题考查了角平分线、三角形中线、全等三角形、等腰三角形的知识;解题的关键是熟练掌握角平分线、三角形中线,全等三角形的性质,从而完成求解.
9、
【分析】
AD是的高,有;由知;CE是的角平分线可得;,;在中,.
【详解】
解:∵AD是的高
∴
∵
∴
∵CE是的角平分线
∴
∵
∴
∴在中,.
【点睛】
本题考查了角平分线.解题的关键在于正确表示各角度之间的数量关系.
10、(1);(2).
【分析】
(1)先根据全等三角形的性质可得,再根据线段的和差即可得;
(2)先根据全等三角形的性质可得,再根据三角形的外角性质即可得.
【详解】
解:(1)∵,
∴,
∵,
∴;
(2)∵,
∴,
∵,
∴.
【点睛】
本题考查全等三角形的性质等知识点,熟练掌握全等三角形的对应角和对应边相等是解题关键.
从正方形的一个顶点引出夹角为的两条射线,并连接它们与该顶点的两对边的交点构成的基本平面几何模型称为半角模型.半角模型可证出多个几何结论,例如:
如下图1,在正方形中,以为顶点的,、与、边分别交于、两点.易证得.
大致证明思路:如图2,将绕点顺时针旋转,得到,由可得、、三点共线,,进而可证明,故.
相关试卷
这是一份初中沪教版 (五四制)第十四章 三角形综合与测试课后练习题,共28页。试卷主要包含了下列说法不正确的是等内容,欢迎下载使用。
这是一份数学七年级下册第十四章 三角形综合与测试练习,共29页。试卷主要包含了下列叙述正确的是,已知长方形纸片ABCD,点E等内容,欢迎下载使用。
这是一份初中数学第十四章 三角形综合与测试课堂检测,共35页。试卷主要包含了下列四个命题是真命题的有,定理,尺规作图等内容,欢迎下载使用。