![2022年沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步训练试题(精选)第1页](http://img-preview.51jiaoxi.com/2/3/12709037/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步训练试题(精选)第2页](http://img-preview.51jiaoxi.com/2/3/12709037/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步训练试题(精选)第3页](http://img-preview.51jiaoxi.com/2/3/12709037/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试精练
展开
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试精练,共29页。试卷主要包含了如图,能与构成同位角的有,如图,下列四个结论等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一辆汽车在广阔的草原上行驶,两次拐弯后,行驶的方向与原来的方向相同,那么这两次拐弯的角度可能是( )
A.第一次向右拐40°,第二次向右拐140°.
B.第一次向右拐40°,第二次向左拐40°.
C.第一次向左拐40°,第二次向右拐140°.
D.第一次向右拐140°,第二次向左拐40°.
2、下列说法:
(1)两条不相交的直线是平行线;
(2)过一点有且只有一条直线与已知直线平行;
(3)在同一平面内两条不相交的线段一定平行;
(4)过一点有且只有一条直线与已知直线垂直;
(5)两点之间,直线最短;
其中正确个数是( )
A.0个B.1个C.2个D.3个
3、如图,平行线AB,CD被直线AE所截.若∠1=70°,则∠2的度数为( )
A.80°B.90°C.100°D.110°
4、如图,直线AB和CD相交于点O,若∠AOC=125°,则∠BOD等于( )
A.55°B.125°C.115°D.65°
5、如图,能与构成同位角的有( )
A.4个B.3个C.2个D.1个
6、点P是直线外一点,为直线上三点,,则点P到直线的距离是( )
A.2cmB.小于2cmC.不大于2cmD.4cm
7、如图,点A是直线l外一点,过点A作AB⊥l于点B.在直线l上取一点C,连结AC,使AC=AB,点P在线段BC上,连结AP.若AB=3,则线段AP的长不可能是( )
A.3.5B.4C.5D.5.5
8、如图,下列四个结论:①∠1=∠3;②∠B=∠5;③∠B+∠BAD=180º;④∠2=∠4;⑤∠D+∠BCD=180º.能判断AB∥CD的个数有 ( )
A.2个B.3个C.4个D.5个
9、一把直尺与一块直角三角板按如图方式摆放,若∠1=28°,则∠2=( )
A.62°B.58°C.52°D.48°
10、如图,矩形纸片ABCD沿EF折叠后,∠FEC=30°,则∠AGE的度数为( )
A.30°B.60°C.80°D.不能确定
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,直线l分别与直线AB、CD相交于点E、F,EG平分∠BEF交直线CD于点G,若∠1=∠BEF=68°,则∠EGF的度数为_______.
2、如图,直线AB和直线CD相交于点O,且∠AOC=2∠BOC,则∠AOD的度数为____________.
3、已知,线段AB垂直于线段CD,垂足为O,OE平分∠AOC,∠BOF=28°,则∠EOF=____°.
4、如图,已知 AB∥CD∥EF,BC∥AD,AC 平分∠BAD,那么图中与∠AGE 相等的角(不包括∠AGE)有_____个.
5、如图,AB∥CD∥EF,若∠ABC=125°,∠CEF=105°,则∠BCE的度数为 _____.
三、解答题(10小题,每小题5分,共计50分)
1、如图所示,直线AB、CD相交于点O,∠1=65°,求∠2、∠3、∠4的度数
2、完成下面的证明
如图,点B在AG上,AGCD,CF平分∠BCD,∠ABE=∠FCB,BE⊥AF点E.
求证:∠F=90°.
证明:∵AGCD(已知)
∴∠ABC=∠BCD(____)
∵∠ABE=∠FCB(已知)
∴∠ABC﹣∠ABE=∠BCD﹣∠FCB
即∠EBC=∠FCD
∵CF平分∠BCD(已知)
∴∠BCF=∠FCD(____)
∴____=∠BCF(等量代换)
∴BECF(____)
∴____=∠F(____)
∵BE⊥AF(已知)
∴____=90°(____)
∴∠F=90°.
3、如图,己知AB∥DC,AC⊥BC,AC平分∠DAB,∠B=50°,求∠D的大小.
阅读下面的解答过程,并填括号里的空白(理由或数学式).
解:∵AB∥DC( ),
∴∠B+∠DCB=180°( ).
∵∠B=( )(已知),
∴∠DCB=180°﹣∠B=180°﹣50°=130°.
∵AC⊥BC(已知),
∴∠ACB=( )(垂直的定义).
∴∠2=( ).
∵AB∥DC(已知),
∴∠1=( )( ).
∵AC平分∠DAB(已知),
∴∠DAB=2∠1=( )(角平分线的定义).
∵AB∥DC(己知),
∴( )+∠DAB=180°(两条直线平行,同旁内角互补).
∴∠D=180°﹣∠DAB= .
4、补全下列推理过程:已知:如图,CE平分∠BCD,∠1=∠2=70°,∠3=40°,求证:AB∥CD.
证明:∵CE平分∠BCD(______)
∴∠1=_____(_______)
∵∠1=∠2=70°(已知)
∴∠1=∠2=∠4=70°(________)
∴AD∥BC(________)
∴∠D=180°-_______=180°-∠1-∠4=40°
∵∠3=40°(已知)
∴______=∠3
∴AB∥CD(_______)
5、如图,直线相交于点平分.
(1)若,求∠BOD的度数;
(2)若,求∠DOE的度数.
6、如图,AB与EF交于点B,CD与EF交于点D,根据图形,请补全下面这道题的解答过程.
(1)∵∠1=∠2(已知)
∴ CD( )
∴∠ABD+∠CDB = ( )
(2)∵∠BAC =65°,∠ACD=115°,( 已知 )
∴∠BAC+∠ACD=180° (等式性质)
∴ABCD ( )
(3)∵CD⊥AB于D,EF⊥AB于F,∠BAC=55°(已知)
∴∠ABD=∠CDF=90°( 垂直的定义)
∴ (同位角相等,两直线平行)
又∵∠BAC=55°,(已知)
∴∠ACD = ( )
7、如图,直线AB,CD,EF相交于点O,
(1)指出∠AOC,∠EOB的对顶角及∠AOC的邻补角.
(2)图中一共有几对对顶角?指出它们.
8、如图,运动会上,小明自踏板M处跳到沙坑P处,甲、乙、丙三名同学分别测得PM=3.25米,PN=3.15米,PF=3.21米,则小明的成绩为 _____米.(填具体数值)
9、已知,在下列各图中,点O为直线AB上一点,∠AOC=60°,直角三角板的直角顶点放在点O处.
(1)如图1,三角板一边OM在射线OB上,另一边ON在直线AB的下方,则∠BOC的度数为 °,∠CON的度数为 °;
(2)如图2,三角板一边OM恰好在∠BOC的角平分线OE上,另一边ON在直线AB的下方,此时∠BON的度数为 °;
(3)在图2中,延长线段NO得到射线OD,如图3,则∠AOD的度数为 °;∠DOC与∠BON的数量关系是∠DOC ∠BON(填“>”、“=”或“<”);
(4)如图4,MN⊥AB,ON在∠AOC的内部,若另一边OM在直线AB的下方,则∠COM+∠AON的度数为 °;∠AOM﹣∠CON的度数为 °
10、如图,方格纸中每个小正方形的边长都是1.
(1)过点P分别画PM∥AC、PN∥AB,PM与AB相交于点M,PN与AC相交于点N.
(2)求四边形PMAN的面积.
-参考答案-
一、单选题
1、B
【分析】
画出图形,根据平行线的判定分别判断即可得出.
【详解】
A.如图,由内错角相等可知,第二次拐弯后与原来平行,但方向相反,故不符合题意;
B.如图,由同位角相等可知,第二次拐弯后与原来平行,且方向相同,故符合题意;
C.如图,由内错角不相等可知,第二次拐弯后与原来不平行,故不符合题意;
D.如图,由同位角不相等可知,第二次拐弯后与原来不平行,故不符合题意.
故选:B.
【点睛】
本题考查了平行线的判定,正确画出图形,熟记判定定理是解题的关键.
2、B
【分析】
根据平面内相交线和平行线的基本性质逐项分析即可.
【详解】
解:(1)在同一平面内,两条不相交的直线是平行线,故原说法错误;
(2)过直线外一点有且只有一条直线与已知直线平行,故原说法错误;
(3)在同一平面内两条不相交的线段不一定平行,故原说法错误;
(4)过一点有且只有一条直线与已知直线垂直,故原说法正确;
(5)两点之间,线段最短,故原说法错误;
故选:B.
【点睛】
本题考查平面内两直线的关系,及其推论等,掌握基本概念和推论是解题关键.
3、D
【分析】
直接利用对顶角以及平行线的性质分析得出答案.
【详解】
解:
∵∠1=70°,
∴∠1=∠3=70°,
∵ABDC,
∴∠2+∠3=180°,
∴∠2=180°−70°=110°.
故答案为:D.
【点睛】
此题主要考查了平行线的性质以及对顶角,正确掌握平行线的性质是解题关键.
4、B
【分析】
根据对顶角相等即可求解.
【详解】
解:∵直线AB和CD相交于点O,∠AOC=125°,
∴∠BOD等于125°.
故选B.
【点睛】
本题主要考查了对顶角的性质,熟知对顶角相等的性质是解题的关键.
5、B
【分析】
根据同位角的定义判断即可;
【详解】
如图,与能构成同位角的有:∠1,∠2,∠3.
故选B.
【点睛】
本题主要考查了同位角的判断,准确分析判断是解题的关键.
6、C
【分析】
根据“直线外一点到直线上各点的所有线段中,垂线段最短”进行解答.
【详解】
解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,且,
∴点到直线的距离不大于,
故选:C.
【点睛】
本题考查了垂线段最短的性质,熟记性质是解题的关键.
7、D
【分析】
直接利用垂线段最短以及结合已知得出AP的取值范围进而得出答案.
【详解】
∵过点A作AB⊥l于点B,在直线l上取一点C,连接AC,使AC=AB,P在线段BC上连接AP.
∵AB=3,
∴AC=5,
∴3≤AP≤5,
故AP不可能是5.5,
故选:D.
【点睛】
本题考查了垂线段最短,正确得出AP的取值范围是解题的关键.
8、A
【分析】
根据同位角相等、内错角相等、同旁内角互补的两直线平行分别判断即可.
【详解】
解:①∵,∴,无法推出;
②∵,∴;
③∵,∴,无法推出;
④∵,∴;
⑤∵∴,无法推出,
综上所述,能判断的是:②④,有2个,
故选:A.
【点睛】
题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.
9、A
【分析】
过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.
【详解】
解:如图,过三角板的直角顶点作直尺两边的平行线,
∵直尺的两边互相平行,
∴,
∴,
∴,
故选:A.
【点睛】
本题考查平行线的性质,掌握平行线的性质是解题的关键.
10、B
【分析】
由翻折变换的性质求出∠GEF的度数,再利用平行线的性质可得出结论.
【详解】
解:∵AD∥BC,∠FEC=30°,
∴∠AGE=∠GEC,
由翻折变换的性质可知∠GEF=∠FEC=30°,
∴∠AGE=∠GEC=∠GEF+∠FEC=30°+30°=60°.
故选:B.
【点睛】
本题考查了平行线的性质以及折叠的性质,根据平行线的性质找到相等(或互补)的角是关键.
二、填空题
1、34°
【分析】
根据角平分线的性质可求出的度数,然后由平行线的判定与性质即可得出的度数.
【详解】
解:平分,
又
故答案为
【点睛】
本题主要考查了平行线的判定与性质、角平分线的性质,灵活应用平行线的判定与性质是解题的关键.
2、
【分析】
根据,可得,再根据对顶角相等即可求出的度数.
【详解】
解:∵,
∴
∴
∵
∴
故答案为:
【点睛】
本题主要考查了邻补角、对顶角的相关知识,熟练运用邻补角、对顶角的相关知识是解答此题的关键.
3、107
【分析】
分两种情况:①射线OF在∠BOC内部;②射线OF在∠BOD内部.
【详解】
解:∵AB⊥CD,垂足为O,
∴∠AOC=∠COB=90°,
∵OE平分∠AOC,
∴∠AOE=∠COE=∠AOC=45°.
分两种情况:
①如图1,射线OF在∠BOC内部时,
∵∠AOE=45°,∠BOF=28°,
∴∠EOF=180°-∠AOE-∠BOF=107°;
②如图2,射线OF在∠BOD内部时,
∵∠COE=45°,∠COB=90°,∠BOF=28°,
∴∠EOF=∠COE+∠COB+∠BOF=163°.
故答案为107或163.
【点睛】
本题考查了垂直的定义,角平分线定义以及角的计算,进行分类讨论是解题的关键.
4、5
【分析】
由AB∥CD∥EF,可得∠AGE=∠GAB=∠DCA;由BC∥AD,可得∠GAE=∠GCF;又因为AC平分∠BAD,可得∠GAB=∠GAE;根据对顶角相等可得∠AGE=∠CGF.所以图中与∠AGE相等的角有5个.
【详解】
解:∵AB∥CD∥EF,
∴∠AGE=∠GAB=∠DCA;
∵BC∥AD,
∴∠GAE=∠GCF;
又∵AC平分∠BAD,
∴∠GAB=∠GAE;
∵∠AGE=∠CGF.
∴∠AGE=∠GAB=∠DCA=∠CGF=∠GAE=∠GCF.
∴图中与∠AGE相等的角有5个
故答案为:5.
【点睛】
本题考查对顶角、邻补角及角平分线的定义和平行线的性质,根据题意仔细观察图形并找出全部答案是解题关键.
5、50°
【分析】
由AB∥CD∥EF,得到∠BCD=∠ABC=125°,∠CEF+∠ECD=180°,则∠ECD=180°-∠CEF=75°,由此即可得到答案.
【详解】
解:∵AB∥CD∥EF,
∴∠BCD=∠ABC=125°,∠CEF+∠ECD=180°,
∴∠ECD=180°-∠CEF=75°,
∴∠BCE=∠BCD-∠ECD=50°,
故答案为:50°.
【点睛】
本题主要考查了平行线的性质,熟知平行线的性质是解题的关键.
三、解答题
1、∠2=115°,∠3=65°,∠4=115°
【分析】
根据对顶角相等和邻补角定义可求出各个角.
【详解】
解:∵∠1=65°,∠1=∠3,
∴∠3=65°,
∵∠1=65°,∠1+∠2=180°,
∴∠2=180°-65°=115°,
又∵∠2=∠4,
∴∠4=115°.
【点睛】
本题考核知识点:对顶角,邻补角,解题关键是掌握对顶角,邻补角的定义和性质.
2、两直线平行,内错角相等;角平分线的定义;∠EBC;内错角相等,两直线平行;∠BEF;两直线平行,内错角相等;∠BEF;垂直的定义
【分析】
根据平行线的性质得到∠ABC=∠BCD,再根据角平分线的定义进而得到∠EBC=∠BCF,即可判定BE∥CF,根据平行线的性质得出∠BEF=∠F,再根据垂直的定义即可得解.
【详解】
证明:∵AG∥CD(已知),
∴∠ABC=∠BCD(两直线平行,内错角相等),
∵∠ABE=∠FCB(已知),
∴∠ABC﹣∠ABE=∠BCD﹣∠FCB,
即∠EBC=∠FCD,
∵CF平分∠BCD(已知),
∴∠BCF=∠FCD(角平分线的定义),
∴∠EBC=∠BCF(等量代换),
∴BE∥CF(内错角相等,两直线平行),
∴∠BEF=∠F(两直线平行,内错角相等),
∵BE⊥AF(已知),
∴∠BEF=90°(垂直的定义),
∴∠F=90°.
故答案为:两直线平行,内错角相等;角平分线的定义;∠EBC;内错角相等,两直线平行;∠BEF;两直线平行,内错角相等;∠BEF;垂直的定义.
【点睛】
本题主要考查了平行线的性质与判定,角平分线的定义,垂直的定义,熟练掌握相关知识是解题的关键.
3、见解析.
【分析】
先根据平行线的性质可得,从而可得,再根据垂直的定义可得,从而可得,然后根据平行线的性质可得,根据角平分线的定义可得,最后根据平行线的性质即可得.
【详解】
解:∵(已知),
∴(两直线平行,同旁内角互补).
∵(已知),
∴.
∵(已知),
∴(垂直的定义).
∴.
∵(已知),
∴(两直线平行,内错角相等).
∵平分(已知),
∴(角平分线的定义).
∵(己知),
∴(两条直线平行,同旁内角互补).
∴.
【点睛】
本题考查了平行线的性质、垂直的定义、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.
4、见解析
【分析】
由已知CE平分∠BCD可得∠1= ∠4,利用等式的性质得出∠1=∠2=∠4=70°,根据直线判定定理得出AD∥BC,利用平角定义求出∠D=180°-∠BCD即可.
【详解】
证明:∵CE平分∠BCD( 已知 ),
∴∠1= ∠4 ( 角平分线定义 ),
∵∠1=∠2=70°已知,
∴∠1=∠2=∠4=70°(等量代换),
∴AD∥BC(内错角相等,两直线平行),
∴∠D=180°-∠BCD=180°-∠1-∠4=40°,
∵∠3=40°已知,
∴ ∠D =∠3,
∴AB∥CD(内错角相等,两直线平行).
故答案为:已知;∠4 ,角平分线定义 ;等量代换;内错角相等,两直线平行;∠BCD;∠D;内错角相等,两直线平行.
【点睛】
本题考查平行线判定,角平分线定义,平角,掌握平行线判定方法,角平分线定义,平角是解题关键.
5、(1)20°;(2)60°
【分析】
(1)先求出∠AOF=140°,然后根据角平分线的定义求出∠AOC=70°,再由垂线的定义得到∠AOB=90°,则∠BOD=180°-∠AOB-∠AOC=20°;
(2)先求出∠AOE=60°,从而得到∠AOF=120°,根据角平分线的性质得到∠AOC =60°,则∠COE=∠AOE+∠AOC=120°,∠DOE=180°-∠COE=60°.
【详解】
解:(1)∵∠AOE=40°,
∴∠AOF=180°-∠AOE=140°,
∵OC平分∠AOF,
∴∠AOC=∠AOF=70°,
∵OA⊥OB,
∴∠AOB=90°,
∴∠BOD=180°-∠AOB-∠AOC=20°;
(2)∵∠BOE=30°,OA⊥OB,
∴∠AOE=60°,
∴∠AOF=180°-∠AOE=120°,
∵OC平分∠AOF,
∴∠AOC=∠AOF=60°,
∴∠COE=∠AOE+∠AOC=60°+60°=120°,
∴∠DOE=180°-∠COE=60°.
【点睛】
本题主要考查了几何中角度的计算,角平分线的定义,垂线的定义,解题的关键在于能够熟练掌握角平分线的定义.
6、(1)AB;内错角相等,两直线平行;180°;两直线平行,同旁内角互补;(2)同旁内角互补,两直线平行;(3)AB;CD;125°;两直线平行,同旁内角互补.
【分析】
(1)由题意直接依据内错角相等,两直线平行进行分析以及两直线平行,同旁内角互补即可;
(2)由题意直接依据同旁内角互补,两直线平行进行分析即可;
(3)由题意直接根据两直线平行,同旁内角互补进行分析即可得出结论.
【详解】
解:(1)∵∠1=∠2 (已知)
∴AB∥CD(内错角相等,两直线平行)
∴∠ABD+ ∠BDC =180°(两直线平行,同旁内角互补)
故答案为:AB;内错角相等,两直线平行;180°;两直线平行,同旁内角互补;
(2)∵∠BAC =65°,∠ACD=115°,(已知)
∴∠BAC+∠ACD=180° (等式性质 )
∴AB∥CD (同旁内角互补,两直线平行)
故答案为:同旁内角互补,两直线平行;
(3)∵CD⊥AB于D,EF⊥AB于F ,∠BAC=55°,(已知)
∴∠ABD=∠CDF=90°(垂直的定义)
∴AB ∥CD(同位角相等,两直线平行)
又∵∠BAC=55°,(已知)
∴∠ACD = 125°.(两直线平行,同旁内角互补)
故答案为:AB;CD;125°;两直线平行,同旁内角互补.
【点睛】
本题考查平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键.
7、(1)∠AOC的对顶角是∠BOD,∠EOB的对顶角是∠AOF,.∠AOC的邻补角是∠AOD,∠BOC;(2)共有6对对顶角,它们分别是∠AOC与∠BOD,∠AOE与∠BOF,∠AOF与∠BOE,∠AOD与∠BOC,∠EOD与∠COF,∠EOC与∠FOD
【分析】
根据对顶角的定义:两个角有一个公共点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角叫做对顶角;邻补角的定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种位置关系的两个角叫做邻补角,进行求解即可.
【详解】
解:(1)由题意得:∠AOC的对顶角是∠BOD,
∠EOB的对顶角是∠AOF.
∠AOC的邻补角是∠AOD,∠BOC.
(2)图中共有6对对顶角,它们分别是∠AOC与∠BOD,∠AOE与∠BOF,∠AOF与∠BOE,∠AOD与∠BOC,∠EOD与∠COF,∠EOC与∠FOD.
【点睛】
本题主要考查了对顶角和邻补角的定义,熟知定义是解题的关键.
8、3.15
【分析】
根据跳远的距离应该是起跳板到P点的垂线段的长度进行求解即可
【详解】
解:由图形可知,小明的跳远成绩应该为PN的长度,即3.15米,
故答案为:3.15.
【点睛】
本题主要考查了点到直线的距离,熟练掌握点到直线的距离的定义是解题的关键.
9、(1)120;150;(2)30°;(3)30,=;(4)150;30.
【分析】
(1)根据∠AOC=60°,利用两角互补可得∠BOC=180°﹣60°=120°,根据∠AON=90°,利用两角和∠CON=∠AOC+∠AON即可得出结论;
(2)根据OM平分∠BOC,可得出∠BOM=60°,由∠BOM+∠BON=∠MON=90°可求得∠BON的度数;
(3)根据对顶角求出∠AOD=30°,根据∠AOC=60°,可得∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.
(4)根据垂直可得∠AON与∠MNO互余,根据∠MNO=60°(三角板里面的60°角),可求∠AON=90°﹣60°=30°,根据∠AOC=60°,求出∠CON=∠AOC﹣∠AON=60°﹣30°=30°即可.
【详解】
解:(1)∵∠AOC=60°,∠BOC与∠AOC互补,∠AON=90°,
∴∠BOC=180°﹣60°=120°,∠CON=∠AOC+∠AON=60°+90°=150°.
故答案为120;150;
(2)∵三角板一边OM恰好在∠BOC的角平分线OE上,
由(1)得∠BOC=120°,
∴∠BOM=∠BOC=60°,
又∵∠MON=∠BOM+∠BON=90°,
∴∠BON=90°﹣60°=30°.
故答案为30°;
(3)∵∠AOD=∠BON(对顶角),∠BON=30°,
∴∠AOD=30°,
又∵∠AOC=60°,
∴∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.
故答案为30,=;
(4)∵MN⊥AB,
∴∠AON与∠MNO互余,
∵∠MNO=60°(三角板里面的60°角),
∴∠AON=90°﹣60°=30°,
∵∠AOC=60°,
∴∠CON=∠AOC﹣∠AON=60°﹣30°=30°,
∴∠COM+∠AON=∠MON+2∠CON=90°+2×30°=150°,
∴∠AOM﹣∠CON=∠MON﹣2∠CON=90°﹣2×30°=30°.
故答案为150;30.
【点睛】
本题考查图中角度的计算,角平分线的定义,对顶角性质,互为余角,补角,掌握角度的和差计算,角平分线的定义,对顶角性质,互为余角,补角是解题关键.
10、(1)见解析;(2)18.
【分析】
(1)直接利用网格结合平行线的判定方法得出答案;
(2)利用四边形PMAN所在矩形减去周围三角形面积得出答案.
【详解】
解:(1)如图所示:点M,点N即为所求;
(2)四边形PMAN的面积为:5×7﹣×3×3﹣×2×4﹣×2×4﹣×3×3=18.
【点睛】
本题考查网格与作图—作直线外一点作已知直线的平行线,网格图形面积等知识,是基础考点,掌握相关知识是解题关键.
相关试卷
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步训练题,共27页。
这是一份数学七年级下册第十三章 相交线 平行线综合与测试精练,共31页。试卷主要包含了如图所示,下列说法错误的是等内容,欢迎下载使用。
这是一份2020-2021学年第十三章 相交线 平行线综合与测试综合训练题,共29页。试卷主要包含了如图,∠1与∠2是同位角的是,下列说法中正确的有,如图,在,下列说法中正确的是等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)