终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年必考点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步测评试题(含答案及详细解析)

    立即下载
    加入资料篮
    2022年必考点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步测评试题(含答案及详细解析)第1页
    2022年必考点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步测评试题(含答案及详细解析)第2页
    2022年必考点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步测评试题(含答案及详细解析)第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试达标测试

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试达标测试,共26页。试卷主要包含了下列命题中,为真命题的是,如图所示,下列说法错误的是等内容,欢迎下载使用。
    七年级数学第二学期第十三章相交线 平行线同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,直线l1l2,直线l3l1l2分别相交于点ACBCl3l1于点B,若∠2=30°,则∠1的度数为(  )A.30° B.40° C.50° D.60°2、如图,直线ABCD相交于点O,若∠AOC=125°,则∠BOD等于(  )A.55° B.125° C.115° D.65°3、如图,能与构成同位角的有(   A.4个 B.3个 C.2个 D.1个4、下列命题中,为真命题的是(    A.若,则 B.若,则C.同位角相等 D.对顶角相等5、如图所示,下列说法错误的是(  )A.∠1和∠3是同位角 B.∠1和∠5是同位角C.∠1和∠2是同旁内角 D.∠5和∠6是内错角6、用等腰直角三角板画∠AOB=45°,将三角板沿OB方向平移到如图所示的虚线M处后绕点M逆时针旋转22°,则三角板的斜边与射线OA的夹角α为(  )度.A.25° B.45° C.30° D.22°7、如图,若要使平行,则绕点至少旋转的度数是(    A. B. C. D.8、如图,把长方形沿EF对折,若,则的度数为(  A. B. C. D.9、用反证法证明命题“在同一平面内,若 ,则 ac”时,首先应假设( A.ab B.bc C.ac 相交 D.ab10、嘉淇在证明“平行于同一条直线的两条直线平行”时,给出了如下推理过程:已知:如图,baca求证:bc证明:作直线DF交直线abc别于点DEFab,∴∠1=∠4,又∵ac∴∠1=∠5,bc小明为保证嘉淇的推理更严谨,想在方框中“∴∠1=∠5”和“∴bc”之间作补充,下列说法正确的是(  )A.嘉淇的推理严谨,不需要补充B.应补充∠2=∠5C.应补充∠3+∠5=180°D.应补充∠4=∠5第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、下面两条平行线之间的三个图形,图____的面积最大,图______的面积最小.2、在体育课上某同学跳远的情况如图所示,直线表示起跳线,经测量,PB=3.3米,PC=3.1米,PD=3.5米,则该同学的实际立定跳远成绩是___________米;3、如图,从人行横道线上的点P处过马路,下列线路中最短的是________.4、已知:某小区地下停车场的栏杆如图所示,当栏杆抬起到最大高度时∠ABC=150°,若此时CD平行地面AE,则_________度.5、已知三条不同的直线abc在同一平面内,下列四个命题:①如果abac,那么bc    ②如果baca,那么bc③如果baca,那么bc; ④如果baca,那么bc其中正确的是__.(填写序号)三、解答题(10小题,每小题5分,共计50分)1、补全下列推理过程:如图,,试说明解:(已知),(垂直的定义).           ).                      ).(已知),           (等量代换).           ).2、如图直线,直线分别和交于点交直线b于点C(1)若,直接写出     (2)若,则点B到直线的距离是      (3)在图中直接画出并求出点A到直线的距离.3、如图,已知AEBFACAEBDBFACBD平行吗?补全下面的解答过程(理由或数学式).解:∵AEBF∴∠EAB          .(          ACAEBDBF∴∠EAC=90°,∠FBD=90°.∴∠EAC=∠FBD          ∴∠EAB          =∠FBG          即∠1=∠2.                              ).4、请把下列证明过程及理由补充完整(填在横线上):5、如图,ABEF交于点BCDEF交于点D,根据图形,请补全下面这道题的解答过程.(1)∵∠1=∠2(已知)           CD                 ∴∠ABD+∠CDB =                            (2)∵∠BAC =65°,∠ACD=115°,( 已知  ) ∴∠BAC+∠ACD=180° (等式性质)ABCD                 (3)∵CDABDEFABF,∠BAC=55°(已知)∴∠ABD=∠CDF=90°( 垂直的定义)                      (同位角相等,两直线平行)又∵∠BAC=55°,(已知)∴∠ACD =                            6、根据要求画图或作答:如图所示,已知ABC三点.(1)连结线段AB(2)画直线AC和射线BC(3)过点B画直线AC的垂线,垂足为点D,则点A到直线BD的距离是线段_______的长度.7、如图,已知点O是直线AB上一点,射线OM平分(1)若,则______度;(2)若,求的度数.8、根据解答过程填空(写出推理理由或数学式):如图,已知∠DAF=∠F,∠B=∠D,试说明ABDC证明:∵∠DAF=∠F(已知).ADBF     ),∴∠D=∠DCF     ).∵∠B=∠D(已知),∴(      )=∠DCF(等量代换),ABDC     ).9、已知如图,∠ABC=∠ADCBFDE分别是∠ABC、∠ADC的角平分线,∠1=∠2,那么CDAB平行吗?写出推理过程.10、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________) -参考答案-一、单选题1、D【分析】根据平行线的性质和垂直的定义解答即可.【详解】解:∵BCl3l1于点B∴∠ACB=90°,∵∠2=30°,∴∠CAB=180°−90°−30°=60°,l1l2∴∠1=∠CAB=60°.故选:D【点睛】此题考查平行线的性质,关键是根据平行线的性质解答.2、B【分析】根据对顶角相等即可求解.【详解】解:∵直线ABCD相交于点O,∠AOC=125°,∴∠BOD等于125°.故选B.【点睛】本题主要考查了对顶角的性质,熟知对顶角相等的性质是解题的关键.3、B【分析】根据同位角的定义判断即可;【详解】如图,与能构成同位角的有:∠1,∠2,∠3.故选B.【点睛】本题主要考查了同位角的判断,准确分析判断是解题的关键.4、D【分析】利用互为相反数的两个数的平方也相等,有理数的大小比较,同位角和对顶角的概念性质进行分析判断即可.【详解】解:A、若,则,故A错误.B、当时,有,故B错误.C、两直线平行,同位角相等,故C错误.D、对顶角相等,D正确.故选:D .【点睛】本题主要是考查了平方、绝对值的比较大小、同位角和对顶角的性质,熟练掌握相关概念及性质,是解决本题的关键.5、B【分析】根据同位角、内错角、同旁内角的意义:两条直线被第三条直线所截,在截线的同旁,在被截的两直线的同一侧的角叫做同位角;两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间的两个角叫做内错角;两条直线被第三条直线所截,在截线同旁,且在被截两条直线之内的两角叫做同旁内角,可得答案.【详解】解:A、∠1和∠3是同位角,故此选项不符合题意; B、∠1和∠5不存在直接联系,故此选项符合题意; C、∠1和∠2是同旁内角,故此选项不符合题意; D、∠1和∠6是内错角,故此选项不符合题意;故选B.【点睛】本题考查了同位角、内错角、用旁内角,利用同位角、内错角、同旁内角的意义是解题关键.6、D【分析】由平移的性质知,AOSM,再由平行线的性质可得∠WMS=∠OWM,即可得答案.【详解】解:由平移的性质知,AOSM故∠WMS=∠OWM=22°;故选D.【点睛】本题利用了两直线平行,内错角相等,及平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.7、A【分析】根据“两直线平行,内错角相等”进行计算.【详解】解:如图,l1l2∴∠AOB=∠OBC=42°,∴80°-42°=38°,l1绕点O至少旋转38度才能与l2平行.故选:A.【点睛】考查了旋转的性质和平行线的性质,根据平行线的性质得到∠AOB=∠OBC=42°是解题的关键,难度不大.8、B【分析】根据折叠的性质及∠1=50°可求出∠BFE的度数,再由平行线的性质即可得到∠AEF的度数.【详解】解:根据折叠以及∠1=50°,得BFEBFG(180°﹣∠1)=65°.ADBC∴∠AEF=180°﹣∠BFE=115°.故选:B.【点睛】本题考查的是平行线的性质及图形翻折变换的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.9、C【分析】用反证法解题时,要假设结论不成立,即假设ac不平行(或ac相交).【详解】解:原命题“在同一平面内,若abcb,则a∥c”, 用反证法时应假设结论不成立,即假设ac不平行(或ac相交).故答案为:C【点睛】此题考查了反证法证明的步骤:(1)假设原命题结论不成立;(2)根据假设进行推理,得出矛盾,说明假设不成立;(3)原命题正确.10、D【分析】根据平行线的性质与判定、平行公理及推论解决此题.【详解】解:证明:作直线DF交直线abc分别于点DEFab∴∠1=∠4,又∵ac∴∠1=∠5,∴∠4=∠5.bc∴应补充∠4=∠5.故选:D【点睛】本题主要考查平行线的性质与判定、平行公理及推论,熟练掌握平行线的性质与判定、平行公理及推论是解决本题的关键.二、填空题1、3    2    【分析】两个完全一样的三角形可以拼成一个平行四边形,每个三角形的面积是拼成的平行四边形面积的一半;两个完全一样的梯形可以拼成一个平行四边形,每个梯形的面积是拼成的平行四边形面积的一半.因为高相同,所以可以通过比较平行四边形的底的长短,得出平行四边形面积的大小.【详解】解:图1、2、3的高相等,图2三角形的底是8,8÷2=4,图1梯形的上、下底之和除以2,即为(2+7)÷2=4.5;图3平行四边形的底为5,∵5>4.5>4;所以,图3平行四边形的面积最大,图2三角形的面积最小.故答案是:3,2.【点睛】本题主要考查平行线的性质及等积法,熟练掌握平行线间的距离相等及等积法是解题的关键.2、3.1【分析】根据点到直线,垂线段最短,即可求解.【详解】解:根据题意得:该同学的实际立定跳远成绩是PC=3.1米.故答案为:3.1【点睛】本题主要考查了点与直线的位置关系,熟练掌握点到直线,垂线段最短是解题的关键.3、PC【分析】根据点到直线的距离,垂线段最短进行求解即可.【详解】解:∵点到直线的距离,垂线段最短,∴从人行横道线上的点P处过马路,线路最短的是PC故答案为:PC【点睛】本题主要考查了点到直线的距离,解题的关键在于能够熟练掌握点到直线的距离垂线段最短.4、120【分析】过点BBFCD,因为ABAE,可得∠ABF=90°,即可得出∠FBC的度数,再由BFCD,可得∠FBC+∠BCD=180°,代入计算即可得出答案.【详解】解:过点BBFCD,如图,由题意可知,∠ABF=90°,∵∠ABC=150°,∴∠FBC=∠ABC-∠ABF=150°-90°=60°,BFCD∴∠FBC+∠BCD=180°,∴∠BCD=180°-∠FBC=180°-60°=120°.故答案为:120.【点睛】本题主要考查了平行线的性质,熟练应用平行线的性质进行求解是解决本题的关键.5、①②④【分析】根据两直线的位置关系一一判断即可.【详解】解:在同一个平面内,①如果abac,那么b⊥c,正确;②如果baca,那么bc,正确;③如果baca,那么bc,错误;④如果baca,那么bc,正确;故答案为:①②④.【点睛】本题考查两直线的位置关系,解题的关键是掌握垂直于同一直线的两条直线平行,平行于同一直线的两条直线平行.三、解答题1、同位角相等,两直线平行;;两直线平行,同位角相等;;内错角相等,两直线平行【分析】根据题意读懂推理过程中每一步的推理依据即可完成解答.【详解】(已知),(垂直的定义),同位角相等,两直线平行),两直线平行,同位角相等),(已知),(等量代换),内错角相等,两直线平行).故答案为:同位角相等,两直线平行;;两直线平行,同位角相等;;内错角相等,两直线平行.【点睛】本题主要考查了平行线的判定与性质、垂直的定义等知识,关键是读懂推理过程,明确每一步的根据.2、(1);(2)4;(3)作图见详解;点A到直线BC的距离为【分析】(1)根据平行线的性质:两直线平行,同旁内角互补及垂直的性质即可得;(2)根据点到直线的距离可得点B到直线AC的距离为线段,由此即可得出结果;(3)过点A,点A到直线BC的距离为线段AD的长度,利用三角形等面积法即可得出.【详解】解:(1)∵故答案为:(2)∵∴点B到直线AC的距离为线段故答案为:4;(3)如图所示:过点A,点A到直线BC的距离为线段AD的长度,为直角三角形, 解得:∴点A到直线BC的距离为【点睛】题目主要考查平行线的性质及点到直线的距离,熟练掌握等面积法求距离是解题关键.3、∠FBG;两直线平行,同位角相等;等量代换;∠EAC;∠FBDACBD;同位角相等,两直线平行【分析】由平行线的性质得∠EAB=∠FBD+∠2,再证∠1=∠2,然后由平行线的判定即可得出结论.【详解】AEBF∴∠EAB=∠FBG(两直线平行,同位角相等).ACAEBDBF∴∠EAC=90°,∠FBD=90°.∴∠EAC=∠FBD(等量代换),∴∠EAB﹣∠EAC=∠FBG﹣∠FBD即∠1=∠2.ACBD(同位角相等,两直线平行).故答案为:∠FBG;两直线平行,同位角相等;等量代换;∠AEC,∠FBDACBD,同位角相等,两直线平行.【点睛】本题考查平行线的判定与性质,掌握平行线的判定与性质是解题的关键.4、∠CAD;两直线平行,内错角相等;∠CAD;等量代换;等式的性质;∠CAD;等量代换;同位角相等,两直线平行【分析】根据ADBC,可得∠3=∠CAD,从而得到∠4=∠CAD,再由∠1=∠2,可得∠BAF=∠CAD.从而得到∠4=∠BAF.即可求证.【详解】证明:∵ADBC(已知),∴∠3=∠CAD(两直线平行,内错角相等).∵∠3=∠4(已知),∴∠4=∠CAD(等量代换).∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF(等式的性质).即∠BAF=∠CAD∴∠4=∠BAF.(等量代换).ABCD(同位角相等,两直线平行).【点睛】本题主要考查了平行线的性质和判定,熟练掌握平行线的性质和判定定理是解题的关键.5、(1)AB;内错角相等,两直线平行;180°;两直线平行,同旁内角互补;(2)同旁内角互补,两直线平行;(3)ABCD;125°;两直线平行,同旁内角互补.【分析】(1)由题意直接依据内错角相等,两直线平行进行分析以及两直线平行,同旁内角互补即可;(2)由题意直接依据同旁内角互补,两直线平行进行分析即可;(3)由题意直接根据两直线平行,同旁内角互补进行分析即可得出结论.【详解】解:(1)∵∠1=∠2 (已知)ABCD(内错角相等,两直线平行)∴∠ABD+ ∠BDC =180°(两直线平行,同旁内角互补)故答案为:AB;内错角相等,两直线平行;180°;两直线平行,同旁内角互补;(2)∵∠BAC =65°,∠ACD=115°,(已知) ∴∠BAC+∠ACD=180° (等式性质 )ABCD (同旁内角互补,两直线平行)故答案为:同旁内角互补,两直线平行;(3)∵CDABDEFABF ,∠BAC=55°,(已知)∴∠ABD=∠CDF=90°(垂直的定义)AB CD(同位角相等,两直线平行)又∵∠BAC=55°,(已知)∴∠ACD = 125°.(两直线平行,同旁内角互补)故答案为:ABCD;125°;两直线平行,同旁内角互补.【点睛】本题考查平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键.6、(1)画图见解析;(2)画图见解析;(3)画图见解析,【分析】(1)连接即可;(2)过两点画直线即可,以为端点画射线即可;(3)利用三角尺过的垂线,垂足为 可得 从而可得点A到直线BD的距离是垂线段的长度.【详解】解:(1)如图,线段AB即为所求作的线段,(2)如图,直线AC和射线BC即为所求作的直线与射线,(3)如图,BD即为所画的垂线,A到直线BD的距离是线段的长度.故答案为:【点睛】本题考查的是画直线,射线,线段,过一点画已知直线的垂线,点到直线的距离的含义,掌握画直线,射线,线段及画已知直线的垂线是解本题的关键.7、(1),(2)【分析】(1)根据平角的定义可求(2)根据,代入解方程求出即可.【详解】解:(1)∵故答案为:(2)∵OM平分【点睛】本题考查了角平分线的有关计算,解题关键是准确识图,弄清角之间的数量关系.8、内错角相等,两直线平行;两直线平行,内错角相等;∠B;同位角相等,两直线平行.【分析】根据平行线的性质与判定条件完成证明过程即可.【详解】证明:∵∠DAF=∠F(已知).AD∥BF(内错角相等,两直线平行),∴∠D=∠DCF(两直线平行,内错角相等).∵∠B=∠D(已知),∴∠B=∠DCF(等量代换),AB∥DC(同位角相等,两直线平行).故答案为:内错角相等,两直线平行;两直线平行,内错角相等;∠B;同位角相等,两直线平行.【点睛】本题主要考查了平行线的性质与判定,熟知平行线的性质与判定条件是解题的关键.9、平行,见解析【分析】先由角平分线的定义得到∠3=ADC,∠2=ABC,再由∠ABC=∠ADC,得到∠3=∠2,即可推出∠3=∠1,再由内错角相等,两直线平行即可证明.【详解】解:CDAB.理由如下:BFDE分别是∠ABC、∠ADC的角平分线,∴∠3=ADC,∠2=ABC∵∠ABC=∠ADC∴∠3=∠2.又∵∠1=∠2,∴∠3=∠1.CDAB(内错角相等,两直线平行).【点睛】本题主要考查了角平分线的定义,平行线的判定,解题的关键在于能够熟练掌握角平分线的定义与平行线的判定条件.10、(1)EFDG,内错角相等,两直线平行;(2)ABEF,同位角相等,两直线平行;(3)ADBC,同旁内角互补,两直线平行;(4)ABDG,内错角相等,两直线平行;【分析】(1)根据两直线被第3条直线所截,确定∠2,∠3的位置为内错角,然后再判断直线平行即可;(2)根据两直线被第3条直线所截,确定∠2,∠5的位置为同位角,然后再判断直线平行即可;(3)根据两直线被第3条直线所截,确定∠2,∠1的位置为同旁内角,然后再判断直线平行即可;(4)根据两直线被第3条直线所截,确定∠5,∠3的位置为内错角,然后再判断直线平行即可.【详解】(1)如果∠2=∠3,那么EF∥DC.(内错角相等,两直线平行);(2)如果∠2=∠5,那么EF∥AB.(同位角相等,两直线平行);(3)如果∠2+∠1=180°,那么AD∥BC.(同旁内角互补,两直线平行);(4)如果∠5=∠3,那么AB∥CD.(内错角相等,两直线平行.故答案为:(1)EFDG,内错角相等,两直线平行;(2)ABEF,同位角相等,两直线平行;(3)ADBC,同旁内角互补,两直线平行;(4)ABDG,内错角相等,两直线平行.【点睛】本题考查平行线的判定,角的位置关系识别,掌握三线八角的两角位置关系,直线平行的判定定理是解题关键. 

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步测试题:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步测试题,共30页。试卷主要包含了如图,能与构成同位角的有,下列语句中,如图,直线AB∥CD,直线AB等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试复习练习题:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试复习练习题,共34页。试卷主要包含了如图,,交于点,,,则的度数是,如图,能与构成同位角的有,在下列各题中,属于尺规作图的是等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步训练题:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步训练题,共26页。试卷主要包含了如图,∠1与∠2是同位角的是,如图,,交于点,,,则的度数是,在下列各题中,属于尺规作图的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map