


初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试随堂练习题
展开
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试随堂练习题,共28页。试卷主要包含了下列说法等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列各图中,∠1与∠2是对顶角的是( )
A.B.
C.D.
2、如图,直尺的一条边经过直角三角尺的直角顶点且平分直角,它的对边恰巧经过60°角的顶点.则∠1的大小是( )
A.30°B.45°C.60°D.75°
3、如图,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,则下列说法错误的是( )
A.线段AC的长度表示点C到AB的距离
B.线段AD的长度表示点A到BC的距离
C.线段CD的长度表示点C到AD的距离
D.线段BD的长度表示点A到BD的距离
4、如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为140°,则第二次的拐角为( )
A.40°B.50°C.140°D.150°
5、如图,AB∥CD,AE∥CF,∠A=41°,则∠C的度数为( )
A.139°B.141°C.131°D.129°
6、如图,下列选项中,不能得出直线的是( )
A.∠1=∠2B.∠4=∠5C.∠2+∠4=180°D.∠1=∠3
7、下列图形中,∠1与∠2不是对顶角的有( )
A.1个B.2个C.3个D.0个
8、下列说法:
(1)两条不相交的直线是平行线;
(2)过一点有且只有一条直线与已知直线平行;
(3)在同一平面内两条不相交的线段一定平行;
(4)过一点有且只有一条直线与已知直线垂直;
(5)两点之间,直线最短;
其中正确个数是( )
A.0个B.1个C.2个D.3个
9、如图,下列条件能判断直线l1//l2的有( )
①;②;③;④;⑤
A.1个B.2个C.3个D.4个
10、下列说法中,正确的是( )
A.从直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离
B.互相垂直的两条直线不一定相交
C.直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm
D.过一点有且只有一条直线垂直于已知直线
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在直线AB上有一点O,OC⊥OD,OE是∠DOB的角平分线,当∠DOE=20°时,∠AOC=___°.
2、填写推理理由
如图:EF∥AD,∠1=∠2,∠BAC=70°,把求∠AGD的过程填写完整.
证明:∵EF∥AD
∴∠2=________(______________)
又∵∠1=∠2
∴∠1=∠3________
∴AB∥________(____________)
∴∠BAC+________=180°(___________)
又∵∠BAC=70°
∴∠AGD=________
3、如图,AD是∠EAC的平分线,AD∥BC,∠B=40°,则∠DAC的度数为____.
4、如图所示,直线a,b被c所截,∠1=30°,∠2:∠3=1:5,则直线a与b的位置关系是________.
5、如图,点C到直线AB的距离是线段 ___的长.
三、解答题(10小题,每小题5分,共计50分)
1、如图所示,点、分别在、上,、均与相交,,,求证:.
2、如图,直线AB、CD相交于点O,OE平分∠BOC,∠FOE=90°,若∠AOD=70°,求∠AOF度数
3、作图并计算:如图,点O在直线上.
(1)画出的平分线(不必写作法);
(2)在(1)的前提下,若,求的度数.
4、如图,直线AB、CD相交于点O,已知OE平分∠BOD,且∠AOC:∠AOD=3:7.
(1)求∠DOE的度数;
(2)若∠EOF是直角,求∠COF的度数.
5、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.
(1)如果∠2=∠3,那么____________.(____________,____________)
(2)如果∠2=∠5,那么____________.(____________,____________)
(3)如果∠2+∠1=180°,那么____________.(____________,____________)
(4)如果∠5=∠3,那么____________.(____________,____________)
6、在三角形ABC中,于D,F是BC上一点,于H,E在AC上,.
(1)如图1,求证:;
(2)如图2,若,请直接写出图中与互余的角,不需要证明.
7、如图,在由相同小正方形组成的网格中,点A、B、C、O都在网格的格点上,∠AOB=90°,射线OC在∠AOB的内部.
(1)用无刻度的直尺作图:
①过点A作ADOC;
②在∠AOB的外部,作∠AOE,使∠AOE=∠BOC;
(2)在(1)的条件下,探究∠AOC与∠BOE之间的数量关系,并说明理由.
8、如图1,在平面直角坐标系中,,,且满足,过作轴于.
(1)求,的值;
(2)在轴上是否存在点P,使得和的面积相等,若存在,求出点P坐标,若不存在,试说明理由.
(3)若过作交轴于,且,分别平分,,如图2,图3,
①求:的度数;
②求:的度数.
9、推理填空:如图,直线,并且被直线所截,交和于点,平分,平分,使说明.
解:∵,
∴( )
∵平分,平分.
∴, ( )
∵
∴( )
∵
∴( )
10、如图1,点A、O、B依次在直线MN上,现将射线OA绕点O沿顺时针方向以每秒4°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒6°的速度旋转,直线MN保持不动,如图2,设旋转时间为t(0≤t≤30,单位:秒)
(1)当t=3时,求∠AOB的度数;
(2)在运动过程中,当∠AOB达到60°时,求t的值;
(3)在旋转过程中是否存在这样的t,使得射线OB与射线OA垂直?如果存在,请直接写出t的值;如果不存在,请说明理由.
-参考答案-
一、单选题
1、C
【分析】
根据对顶角的定义作出判断即可.
【详解】
解:根据对顶角的定义可知:只有C选项的是对顶角,其它都不是.
故选C.
【点睛】
本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.
2、D
【分析】
由AC平分∠BAD,∠BAD=90°,得到∠BAC=45°,再由BD∥AC,得到∠ABD=∠BAC=45°,∠1+∠CBD=180°,由此求解即可.
【详解】
解:∵AC平分∠BAD,∠BAD=90°,
∴∠BAC=45°
∵BD∥AC,
∴∠ABD=∠BAC=45°,∠1+∠CBD=180°,
∵∠CBD=∠ABD+∠ABC=45°+60°=105°,
∴∠1=75°,
故选D.
【点睛】
本题主要考查了平行线的性质和角平分线的定义,解题的关键在于能够熟练掌握平行线的性质.
3、D
【分析】
根据直线外一点,到这条直线的垂线段的长度是这点到直线的距离判断即可.
【详解】
解:A. 线段AC的长度表示点C到AB的距离,说法正确,不符合题意;
B. 线段AD的长度表示点A到BC的距离,说法正确,不符合题意;
C. 线段CD的长度表示点C到AD的距离,说法正确,不符合题意;
D. 线段BD的长度表示点B到AD的距离,原说法错误,符合题意;
故选:D.
【点睛】
本题考查了点到直线的距离,解题关键是准确识图,正确进行判断.
4、C
【分析】
由于拐弯前、后的两条路平行,用平行线的性质求解即可.
【详解】
解:∵拐弯前、后的两条路平行,
∴(两直线平行,内错角相等).
故选:C.
【点睛】
本题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.
5、A
【分析】
如图,根据AECF,得到∠CGB=41°,根据ABCD,即可得到∠C=139°..
【详解】
解:如图,∵AECF,
∴∠A=∠CGB=41°,
∵ABCD,
∴∠C=180°-∠CGB=139°.
故选:A
【点睛】
本题考查了平行线的性质,熟知平行线的性质是解题关键.
6、A
【分析】
根据平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,分别进行分析即可.
【详解】
解:A、∠1=∠2,不能判断直线,故此选项符合题意;
B、根据同位角相等,两直线平行,可判断直线,故此选项不合题意;
C、根据同旁内角互补,两直线平行,可判断直线,故此选项不合题意;
D、根据内错角相等,两直线平行,可判断直线,故此选项不合题意.
故选:A.
【点睛】
此题主要考查了平行线的判定,关键是掌握平行线的判定定理.
7、C
【分析】
根据对顶角的定义:有公共顶点且两条边都互为反向延长线的两个角称为对顶角,逐一判断即可.
【详解】
解:①中∠1和∠2的两边不互为反向延长线,故①符合题意;
②中∠1和∠2是对顶角,故②不符合题意;
③中∠1和∠2的两边不互为反向延长线,故③符合题意;
④中∠1和∠2没有公共点,故④符合题意.
∴∠1 和∠2 不是对顶角的有3个,
故选C.
【点睛】
此题考查的是对顶角的识别,掌握对顶角的定义是解决此题的关键.
8、B
【分析】
根据平面内相交线和平行线的基本性质逐项分析即可.
【详解】
解:(1)在同一平面内,两条不相交的直线是平行线,故原说法错误;
(2)过直线外一点有且只有一条直线与已知直线平行,故原说法错误;
(3)在同一平面内两条不相交的线段不一定平行,故原说法错误;
(4)过一点有且只有一条直线与已知直线垂直,故原说法正确;
(5)两点之间,线段最短,故原说法错误;
故选:B.
【点睛】
本题考查平面内两直线的关系,及其推论等,掌握基本概念和推论是解题关键.
9、D
【分析】
根据平行线的判定定理进行依次判断即可.
【详解】
①∵∠1,∠3互为内错角,∠1=∠3,∴;
②∵∠2,∠4互为同旁内角,∠2+∠4=180° ,∴;
③∠4,∠5互为同位角,∠4=∠5,∴;
④∠2,∠3没有位置关系,故不能证明 ,
⑤,,
∴∠1=∠3,
∴,
故选D.
【点睛】
此题主要考查平行线的判定,解题的关键是熟知平行线的判定定理.
10、C
【分析】
根据点到直线距离的定义分析,可判断选项A和C;根据相交线的定义分析,可判断选项B,根据垂线的定义分析,可判断选项D,从而完成求解.
【详解】
从直线外一点到这条直线的垂线段的长度,叫做这个点到这条直线的距离,即选项A错误;
在同一平面内,互相垂直的两条直线一定相交,即选项B错误;
直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm,即选项C正确;
在同一平面内,过一点有且只有一条直线垂直于已知直线,即选项D错误;
故选:C.
【点睛】
本题考查了点和直线的知识;解题的关键是熟练掌握点到直线距离、相交线、垂线的性质,从而完成求解.
二、填空题
1、50
【分析】
先求出∠BOD,根据平角的性质即可求出∠AOC.
【详解】
∵OE是∠DOB的角平分线,当∠DOE=20°
∴∠BOD=2∠DOE=40°
∵OC⊥OD,
∴∠AOC=180°-90°-∠BOD=50°
故答案为:50.
【点睛】
此题主要考查角度求解,解题的关键是熟知角平分线的性质、直角的性质.
2、∠3 两直线平行,同位角相等 等量代换 DG 内错角相等,两直线平行 ∠AGD 两直线平行,同旁内角互补 110°
【分析】
根据平行线的判定与性质,求解即可.
【详解】
∵EF∥AD,
∴∠2=∠3,(两直线平行,同位角相等)
又∵∠1=∠2,
∴∠1=∠3,(等量代换)
∴AB∥DG.(内错角相等,两直线平行)
∴∠BAC+∠AGD=180°.(两直线平行,同旁内角互补)
又∵∠BAC=70°,
∴∠AGD=110°.
故答案是:∠3,两直线平行,同位角相等,等量代换,DG,内错角相等,两直线平行,∠AGD,两直线平行,同旁内角互补,110°
【点睛】
此题考查了平行线的判定与性质,解题的关键是掌握平行线的判定方法与性质.
3、40°
【分析】
根据平行线的性质可得∠EAD=∠B,根据角平分线的定义可得∠DAC=∠EAD,即可得答案.
【详解】
∵AD∥BC,∠B=40°,
∴∠EAD=∠B=40°,
∵AD是∠EAC的平分线,
∴∠DAC=∠EAD=40°,
故答案为:40°
【点睛】
本题考查平行线的性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.
4、平行
【分析】
根据∠2:∠3=1:5,求出的度数,然后根据同位角相等两直线平行进行解答即可.
【详解】
解:∵∠2:∠3=1:5,
∴∠2=30°,
∴∠1=∠2,
∴a∥b,
故答案为:平行.
【点睛】
本题考查了角的和差倍分求角度以及平行的判定,根据题意求出∠2=30°是解本题的关键.
5、CF
【分析】
根据点到直线的距离的定义即可求解.
【详解】
∵CF⊥BF,
∴点到直线的距离是线段CF的长
故答案为:CF.
【点睛】
此题主要考查点到直线的距离的判断,解题的关键是熟知点到直线的距离需要作垂线.
三、解答题
1、证明见解析
【分析】
由,证明,再证,最后根据对顶角相等,可得答案.
【详解】
证明:∵,
∴,
∴∠ABD=∠D,
又∵,
∴∠ABD=∠C,
∴,
∴,
∵,
∴.
【点睛】
本题主要考查了平行线的性质与判定,对顶角的性质,解题的关键在于能够熟练掌握相关知识进行求解.
2、55°
【分析】
由题意利用对顶角可得∠COB=∠AOD=70°,再根据角平分线性质可得∠EOB=∠EOC=35°,进而利用邻补角的性质得出∠AOF=180°-∠EOB-∠FOE即可求得答案.
【详解】
解:∵∠AOD=70°,
∴∠COB=∠AOD=70°,
∵OE平分∠BOC,
∴∠EOB=∠EOC=35°,
∵∠FOE=90°,
∴∠AOF=180°-∠EOB-∠FOE=55°.
【点睛】
本题考查角的运算,熟练掌握对顶角、邻补角的性质以及角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.
3、(1)见解析;(2)150°
【分析】
(1)根据画角平分线的方法,画出角平分线即可;
(2)先求出的度数,然后由角平分线的定义,即可求出答案.
【详解】
解:(1)如图,OD即为平分线
(2)解:∵,
∴,
,
∴;
【点睛】
本题考查了角平分线的定义,画角平分线,解题的关键是掌握角平分线的定义进行解题.
4、(1);(2)
【分析】
(1)由∠AOC:∠AOD=3:7,先求解 再利用对顶角相等求解 结合角平分线的定义可得答案;
(2)先求解 再利用平角的定义可得答案.
【详解】
解:(1) ∠AOC:∠AOD=3:7,
OE平分∠BOD,
(2)
【点睛】
本题考查的是角平分线的定义,对顶角的性质,平角的定义,垂直的定义,角的和差运算,掌握“几何图形中角的和差关系”是解本题的关键.
5、(1)EFDG,内错角相等,两直线平行;(2)ABEF,同位角相等,两直线平行;(3)ADBC,同旁内角互补,两直线平行;(4)ABDG,内错角相等,两直线平行;
【分析】
(1)根据两直线被第3条直线所截,确定∠2,∠3的位置为内错角,然后再判断直线平行即可;
(2)根据两直线被第3条直线所截,确定∠2,∠5的位置为同位角,然后再判断直线平行即可;
(3)根据两直线被第3条直线所截,确定∠2,∠1的位置为同旁内角,然后再判断直线平行即可;
(4)根据两直线被第3条直线所截,确定∠5,∠3的位置为内错角,然后再判断直线平行即可.
【详解】
(1)如果∠2=∠3,那么EF∥DC.(内错角相等,两直线平行);
(2)如果∠2=∠5,那么EF∥AB.(同位角相等,两直线平行);
(3)如果∠2+∠1=180°,那么AD∥BC.(同旁内角互补,两直线平行);
(4)如果∠5=∠3,那么AB∥CD.(内错角相等,两直线平行.
故答案为:(1)EFDG,内错角相等,两直线平行;(2)ABEF,同位角相等,两直线平行;(3)ADBC,同旁内角互补,两直线平行;(4)ABDG,内错角相等,两直线平行.
【点睛】
本题考查平行线的判定,角的位置关系识别,掌握三线八角的两角位置关系,直线平行的判定定理是解题关键.
6、
(1)证明见解析;
(2).
【分析】
(1)由垂直于同一条直线的两直线平行可推出.再根据平行线的性质可得出,即得出.最后根据平行线的判定条件,即可判断;
(2)由可推出,,即得出,.由,可推出,即得出.由,可直接推出.由此即可判断哪些角与互余.
(1)
证明:∵,,
∴,
∴.
∵,
∴,
∴.
(2)
与互余的角有:.
证明:∵,
∴,,
∴,.
∵,
∴,
∴.
∵,
∴,即.
综上,可知与互余的角有:.
【点睛】
本题考查平行线的判定和性质,余角的概念.熟练掌握平行线的判定条件和性质是解答本题的关键.
7、(1)①见解析;②见解析;(2)∠AOC+∠BOE=180°,理由见解析
【分析】
(1)①取格点D,然后作直线AD即可;②取格点E,然后作射线OE即可.
(2)根据角的和差定义证明即可.
【详解】
解:(1)①如图,直线AD即为所求作.
②∠AOE即为所求作.
(2)∠AOC+∠BOE=180°.
理由:∵∠AOC=90°﹣∠BOC,∠BOE=90°+∠AOE,∠BOC=∠AOE,
∴∠AOC+∠BOE=90°﹣∠AOE+90°+∠AOE=180°.
【点睛】
本题考查了格点作图以及角的大小关系,明确题意、熟练掌握上述基本知识是解题关键.
8、(1),;(2)存在,或;(3)①;②
【分析】
(1)根据非负数的和为零,则每一个数为零,列等式计算即可;
(2)设点P的坐标为(n,0),根据题意,等高等底的两个三角形的面积相等,确定OP=AB=8即|n|=8,化简绝对值即可;
(3)①利用平行线性质,得内错角相等,运用直角三角形的两个锐角互余求解;
②作,利用平行线的性质,角的平分线的定义,计算即可.
【详解】
解:(1)∵,
∴m+4=0,n-4=0,
∴,.
(2)存在,
设点P的坐标为(n,0),则OP=|n|,
∵A(-4,0),C(4,4),
∴B(4,0),AB=4-(-4)=8,
∵,,且和的面积相等,
∴,
∴OP=AB=8,
∴|n|=8,
∴n=8或n=-8,
∴或;
(3)①∵,
∴,
又∵,
∴.
②作,如图,
∵,
∴,
∴,,
∴,
∵,分别平分,,
∴,,
∴,
即.
【点睛】
本题考查了非负数的性质,平行线的性质,互余即两个角的和为90°,角的平分线即把从角的顶点引一条射线,把这个角分成相等的两个角;坐标的意义,熟练掌握平行线的性质,是解题的关键.
9、两直线平行,同位角相等;∠CNE,角平分线的定义;等量代换;同位角相等,两直线平行.
【分析】
利用平行线的性质定理和判定定理解答即可.
【详解】
解:∵AB∥CD,
∴∠AME=∠CNE.(两直线平行,同位角相等),
∵MP平分∠AME,NQ平分∠CNE,
∴∠1=∠AME,=∠CNE.( 角平分线的定义),
∵∠AME=∠CNE,
∴∠1=∠2.(等量代换),
∵∠1=∠2,
∴MP∥NQ.(同位角相等,两直线平行).
故答案为:两直线平行,同位角相等;∠CNE,角平分线的定义;等量代换;同位角相等,两直线平行.
【点睛】
此题考查的是平行线的判定及性质,掌握平行线的性质定理和判定定理是解决此题的关键.
10、(1)150°;(2)12或24;(3)存在,9秒、27秒
【分析】
(1)根据∠AOB=180°−∠AOM−∠BON计算即可.
(2)先求解重合时,再分两种情况讨论:当0≤t≤18时;当18≤t≤30时;再构建方程求解即可.
(3)分两种情形,当0≤t≤18时;当18≤t≤30时;分别构建方程求解即可.
【详解】
解:(1)当t=3时,∠AOB=180°−4°×3−6°×3=150°.
(2)当重合时,
解得:
当0≤t≤18时:
4t+6t=120
解得:
当18≤t≤30时:则
4t+6t=180+60,
解得 t=24,
答:当∠AOB达到60°时,t的值为6或24秒.
(3) 当0≤t≤18时,由
180−4t−6t=90,
解得t=9,
当18≤t≤30时,同理可得:
4t+6t=180+90
解得t=27.
所以大于的答案不予讨论,
答:在旋转过程中存在这样的t,使得射线OB与射线OA垂直,t的值为9秒、27秒.
【点睛】
本题考查的是平角的定义,角的和差关系,垂直的定义,一元一次方程的应用,熟练的利用一元一次方程解决几何角度问题,清晰的分类讨论是解本题的关键.
相关试卷
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试练习题,共30页。试卷主要包含了直线,下列说法中正确的有个,如图,∠1与∠2是同位角的是,下列命题正确的是等内容,欢迎下载使用。
这是一份沪教版 (五四制)第十三章 相交线 平行线综合与测试复习练习题,共29页。试卷主要包含了下列语句中等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时练习,共29页。试卷主要包含了如图所示,直线l1∥l2,点A,下列语句中等内容,欢迎下载使用。
