开学活动
搜索
    上传资料 赚现金

    精品试题沪教版(上海)七年级数学第二学期第十三章相交线 平行线综合练习试卷(含答案详解)

    精品试题沪教版(上海)七年级数学第二学期第十三章相交线 平行线综合练习试卷(含答案详解)第1页
    精品试题沪教版(上海)七年级数学第二学期第十三章相交线 平行线综合练习试卷(含答案详解)第2页
    精品试题沪教版(上海)七年级数学第二学期第十三章相交线 平行线综合练习试卷(含答案详解)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)第十三章 相交线 平行线综合与测试复习练习题

    展开

    这是一份沪教版 (五四制)第十三章 相交线 平行线综合与测试复习练习题,共29页。试卷主要包含了下列语句中等内容,欢迎下载使用。
    七年级数学第二学期第十三章相交线 平行线综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在直角三角形ABC中,∠BAC=90°,ADBC于点D,则下列说法错误的是(  )A.线段AC的长度表示点CAB的距离B.线段AD的长度表示点ABC的距离C.线段CD的长度表示点CAD的距离D.线段BD的长度表示点ABD的距离2、如图,已知直线ADBCBE平分∠ABC交直线DA于点E,若∠DAB=54°,则∠E等于(    A.25° B.27° C.29° D.45°3、如图,下列条件中,不能判断的是(    A.∠1=∠3 B.∠2=∠4 C.∠4+∠5=180° D.∠3=∠44、下列图形中,∠1与∠2不是对顶角的有(  )A.1个 B.2个 C.3个 D.0个5、下列各图中,∠1与∠2是对顶角的是(      A.  B. C.  D.6、下列语句中:①有公共顶点且相等的角是对顶角;②直线外一点到这条直线的垂线段,叫做点到直线的距离;③互为邻补角的两个角的平分线互相垂直;④经过一点有且只有一条直线与已知直线垂直;其中正确的个数有(    A.1个 B.2个 C.3个 D.4个7、如图,有ABC三个地点,且∠ABC=90°,B地在A地的北偏东43°方向,那么C地在B地的(  )方向.A.南偏东47° B.南偏西43° C.北偏东43° D.北偏西47°8、如图,点DAB上的一点,点EAC边上的一点,且∠B=70°,∠ADE=70°,∠DEC=100°,则∠C是(       )A.70° B.80° C.100° D.110°9、如图,直线被所截,下列说法,正确的有(    是同旁内角;是内错角;是同位角;是内错角.A.①③④ B.③④ C.①②④ D.①②③④10、如图所示,ABCD,若∠2是∠1的2倍,则∠2等于(  )A.60° B.90° C.120° D.150°第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,P是直线a外一点,点ABCD为直线a上的点,PA=5,PB=4,PC=2,PD=7,根据所给数据写出点P到直线a的距离l的取值范围是______2、如图,口渴的马儿在点处想尽快地到达小河边喝水,它应该沿着线路奔跑,依据是___________.3、如图,直线a、b、c分别与直线d、e相交,与∠1构成同位角的角共有________个,和∠l构成内错角的角共有________个,与∠1构成同旁内角的角共有________个.4、如图,把一张长方形的纸条按如图那样折叠后,若量得∠DBA=40°,则∠ABC的度数为 _____度.5、如图,ABCD,∠EGB=50°,则∠CHG的大小为 _____.三、解答题(10小题,每小题5分,共计50分)1、如图直线,直线分别和交于点交直线b于点C(1)若,直接写出     (2)若,则点B到直线的距离是      (3)在图中直接画出并求出点A到直线的距离.2、如图,已知∠A=120°,∠FEC=120°,∠1=∠2,试说明∠FDG=∠EFD.请补全证明过程,即在下列括号内填上结论或理由.解:∵∠A=120°,∠FEC=120°(已知),∴∠A             ).AB             ).又∵∠1=∠2(已知),ABCD       ).EF              ).∴∠FDG=∠EFD       ).3、小明同学遇到这样一个问题:如图①,已知:ABCDEABCD之间一点,连接BEED,得到∠BED求证:∠BED=∠B+∠D小亮帮助小明给出了该问的证明.证明:过点EEFAB则有∠BEF=∠BABCDEFCD∴∠FED=∠D∴∠BED=∠BEF+∠FED=∠B+∠D请你参考小亮的思考问题的方法,解决问题:(1)直线l1l2,直线EF和直线l1l2分别交于CD两点,点AB分别在直线l1l2上,猜想:如图②,若点P在线段CD上,∠PAC=15°,∠PBD=40°,求∠APB的度数.(2)拓展:如图③,若点P在直线EF上,连接PAPBBDAC),直接写出∠PAC、∠APB、∠PBD之间的数量关系.4、补全下列推理过程:如图,,试说明解:(已知),(垂直的定义).           ).                      ).(已知),           (等量代换).           ).5、完成下列证明:已知,垂足分别为,且,求证证明:(已知),               (已知)          6、如图,OBODOC平分∠AOD,∠BOC=35°,求∠AOD和∠AOB的大小.7、如图,107国道上有一个出口M,想在附近公路旁建一个加油站,欲使通道最短,应沿怎样的线路施工?8、如图,平面上有三个点ABC(1)根据下列语句按要求画图.①画射线AB,用圆规在线段AB的延长线上截取BDAB(保留作图痕迹);②连接CACDCB③过点CCEAD,垂足为点E④过点DDFAC,交CB的延长线于点F(2)①在线段CACECD中,线段_________最短,依据是_________.②用刻度尺或圆规检验DFAC的大小关系为_________.9、完成下列填空:已知:如图,CA平分求证:证明:∵(已知)________( )(已知)________(  又∵CA平分(已知)________(  (已知)_____________=30°(  10、如图,如果∠1=60°,∠2=120°,∠D=60°,那么ABCD平行吗?BCDE呢?观察下面的解答过程,补充必要的依据或结论.解∵∠1=60°(已知)ABC=∠1 (①   ∴∠ABC=60°(等量代换)又∵∠2=120°(已知)∴(②     )+∠2=180°(等式的性质)ABCD (③     又∵∠2+∠BCD=(④   °)∴∠BCD=60°(等式的性质)∵∠D=60°(已知)∴∠BCD=∠D (⑤     BCDE (⑥      -参考答案-一、单选题1、D【分析】根据直线外一点,到这条直线的垂线段的长度是这点到直线的距离判断即可.【详解】解:A. 线段AC的长度表示点CAB的距离,说法正确,不符合题意;B. 线段AD的长度表示点ABC的距离,说法正确,不符合题意;C. 线段CD的长度表示点CAD的距离,说法正确,不符合题意;D. 线段BD的长度表示点BAD的距离,原说法错误,符合题意;故选:D.【点睛】本题考查了点到直线的距离,解题关键是准确识图,正确进行判断.2、B【分析】根据两直线平行,内错角相等可求∠ABC=54°,再根据角平分线的性质可求∠EBC=27°,再根据两直线平行,内错角相等可求∠E【详解】解:∵ADBC∴∠ABC=∠DAB=54°,∠EBC=∠EBE平分∠ABC∴∠EBC=ABC=27°,∴∠E=27°.故选:B.【点睛】本题考查了平行线的性质,角平分线,关键是求出∠EBC=27°.3、D【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】解:,内错角相等,,故本选项错误,不符合题意;,同位角相等,,故本选项错误,不符合题意;,同旁内角互补,,故本选项错误,不符合题意;,它们不是内错角或同位角,的关系无法判定,故本选项正确,符合题意.故选:D.【点睛】本题考查的是平行线的判定,解题的关键是熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行的知识.4、C【分析】根据对顶角的定义:有公共顶点且两条边都互为反向延长线的两个角称为对顶角,逐一判断即可.【详解】解:①中∠1和∠2的两边不互为反向延长线,故①符合题意;②中∠1和∠2是对顶角,故②不符合题意;③中∠1和∠2的两边不互为反向延长线,故③符合题意;④中∠1和∠2没有公共点,故④符合题意.∴∠1 和∠2 不是对顶角的有3个,故选C.【点睛】此题考查的是对顶角的识别,掌握对顶角的定义是解决此题的关键.5、C【分析】根据对顶角的定义作出判断即可.【详解】解:根据对顶角的定义可知:只有C选项的是对顶角,其它都不是.故选C.【点睛】本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.6、A【分析】根据对顶角,点到直线的距离,邻补角,角平分线以及垂直的定义分别判断.【详解】解:①有公共顶点且相等的角不一定是对顶角,故错误;②直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故错误③互为邻补角的两个角的平分线互相垂直,故正确;④同一平面内,经过一点有且只有一条直线与已知直线垂直,故错误;故选A【点睛】本题考查了对顶角,点到直线的距离,邻补角,角平分线以及垂直的定义,属于基础知识,要注意理解概念,抓住易错点.7、D【分析】根据方向角的概念,和平行线的性质求解.【详解】解:如图:AFDE∴∠ABE=∠FAB=43°,ABBC∴∠ABC=90°,∴∠CBD=180°﹣90°﹣43°=47°,C地在B地的北偏西47°的方向上.故选:D.【点睛】本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.8、B【分析】先证明DEBC,根据平行线的性质求解.【详解】解:因为∠B=∠ADE=70°所以DEBC所以∠DEC+∠C=180°,所以∠C=80°.故选:B.【点睛】此题主要考查平行线的判定与性质,解题的关键是熟知同位角相等,两直线平行.9、D【分析】根据同位角、内错角、同旁内角的定义可直接得到答案.【详解】解:①是同旁内角,说法正确;是内错角,说法正确;是同位角,说法正确;是内错角,说法正确,故选:D【点睛】此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F” 形,内错角的边构成“Z”形,同旁内角的边构成“U”形.10、C【分析】先由ABCD,得到∠1=∠CEF,根据∠2+∠CEF=180°,得到∠2+∠1=180°,再由∠2=2∠1,则3∠1=180°,由此求解即可.【详解】解:∵ABCD∴∠1=∠CEF又∵∠2+∠CEF=180°,∴∠2+∠1=180°,∵∠2=2∠1,∴3∠1=180°,∴∠1=60°,∴∠2=120°,故选C.【点睛】本题主要考查了平行线的性质,领补角互补,解题的关键在于能够熟练掌握平行线的性质.二、填空题1、0<l≤2【分析】根据直线外一点与直线上各点连线的所有线段中,垂线段最短解答即可.【详解】解:∵点P为直线外一点,点ABCD直线a上不同的点,  ∵直线外一点与直线上各点连线的所有线段中,垂线段最短 ∴点P到直线a的距离l小于等于2, 故答案为:0<l≤2.【点睛】本题考查点到直线的距离、垂线段最短,熟知直线外一点与直线上各点连线的所有线段中,垂线段最短是解答的关键.2、垂线段最短【分析】根据点到直线,垂线段最短,即可求解.【详解】解:因为 垂直于小河边所在直线,所以它应该沿着线路奔跑,依据是垂线段最短.故答案为:垂线段最短.【点睛】本题主要考查了点与直线的关系,熟练掌握点到直线,垂线段最短是解题的关键.3、3    2    2    【分析】根据同位角、内错角、同旁内角的定义判断即可;【详解】如图,与∠1是同位角的是:∠2, ∠3,∠4;与∠1是内错角的是:∠5, ∠6;与∠1是同旁内角的是:∠7,∠8.【点睛】本题主要考查了同位角、内错角、同旁内角的判断,准确分析是解题的关键.4、70【分析】由∠DBA的度数可知∠ABE度数,再根据折叠的性质可得∠ABC=∠EBCABE即可.【详解】解:延长DB到点E,如图:∵∠DBA=40°,∴∠ABE=180°﹣∠DBA=180°﹣40°=140°,又∵把一张长方形的纸条按如图那样折叠,∴∠ABC=∠EBCABE=70°,故答案为:70.【点睛】本题主要考查了折叠的性质和邻补角的定义,属于基础题目,得到∠ABCABE是解题的关键.5、130°【分析】根据平行线的性质可得∠EHD=∠EGB=50°,再利用邻补角的性质可求解.【详解】解:∵ABCD,∠EGB=50°,∴∠EHD=∠EGB=50°,∴∠CHG=180°﹣∠EHD=130°.故答案为:130°.【点睛】本题主要考查平行线的性质,邻补角,属于基础题.三、解答题1、(1);(2)4;(3)作图见详解;点A到直线BC的距离为【分析】(1)根据平行线的性质:两直线平行,同旁内角互补及垂直的性质即可得;(2)根据点到直线的距离可得点B到直线AC的距离为线段,由此即可得出结果;(3)过点A,点A到直线BC的距离为线段AD的长度,利用三角形等面积法即可得出.【详解】解:(1)∵故答案为:(2)∵∴点B到直线AC的距离为线段故答案为:4;(3)如图所示:过点A,点A到直线BC的距离为线段AD的长度,为直角三角形, 解得:∴点A到直线BC的距离为【点睛】题目主要考查平行线的性质及点到直线的距离,熟练掌握等面积法求距离是解题关键.2、∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等【分析】利用平行线的判定,由已知得ABEFABCD,可推出EFCD,利用平行线的性质得结论【详解】解:∵∠A=120°,∠FEC=120°(已知),∴∠A=∠FEC(等量代换),ABEF(同位角相等,两直线平行),又∵∠1=∠2(已知),ABCD(内错角相等,两直线平行),EFCD(平行于同一条直线的两直线互相平行),∴∠FDG=∠EFD(两直线平行,内错角相等),故答案为:∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等.【点睛】本题考查了平行线的性质和判定,学会分析,正确的利用平行线的性质和判定是解决本题的关键.3、(1)55°;(2)当P在线段CD上时,∠APB=∠PAC +∠PBD;当PDC延长线上时,∠APB=∠PBD-∠PAC;当PCD延长线上时,∠APB=∠PAC-∠PBD【分析】(1)过点PPG∥l1,可得∠APG=∠PAC=15°,由l1∥l2,可得PG∥l2,则∠BPG=∠PBD=40°,即可得到∠APB=∠APG+∠BPG=55°;(2)分当P在线段CD上时;当PDC延长线上时;当PCD延长线上时,三种情况讨论求解即可.【详解】解:(1)如图所示,过点PPG∥l1∴∠APG=∠PAC=15°,l1∥l2PG∥l2∴∠BPG=∠PBD=40°,∴∠APB=∠APG+∠BPG=55°;(2)由(1)可得当P在线段CD上时,∠APB=∠PAC    +∠PBD如图1所示,当PDC延长线上时,过点PPG∥l1∴∠APG=∠PACl1∥l2PG∥l2∴∠BPG=∠PBD=40°,∴∠APB=∠BPG-∠APG=∠PBD-∠PAC如图2所示,当PCD延长线上时,过点PPGl1∴∠APG=∠PACl1∥l2PG∥l2∴∠BPG=∠PBD=40°,∴∠APB=∠APG-∠BPG=∠PAC-∠PBD∴综上所述,当P在线段CD上时,∠APB=∠PAC +∠PBD;当PDC延长线上时,∠APB=∠PBD-∠PAC;当PCD延长线上时,∠APB=∠PAC-∠PBD【点睛】本题主要考查了平行线的性质,平行公理的应用,解题的关键在于能够熟练掌握平行线的性质.4、同位角相等,两直线平行;;两直线平行,同位角相等;;内错角相等,两直线平行【分析】根据题意读懂推理过程中每一步的推理依据即可完成解答.【详解】(已知),(垂直的定义),同位角相等,两直线平行),两直线平行,同位角相等),(已知),(等量代换),内错角相等,两直线平行).故答案为:同位角相等,两直线平行;;两直线平行,同位角相等;;内错角相等,两直线平行.【点睛】本题主要考查了平行线的判定与性质、垂直的定义等知识,关键是读懂推理过程,明确每一步的根据.5、见详解【分析】根据垂直的定义及平行线的性质与判定可直接进行求解.【详解】证明:(已知),(垂直的定义)(同位角相等,两直线平行)(两直线平行,同位角相等)(已知)(等量代换)(内错角相等,两直线平行).【点睛】本题主要考查垂直的定义及平行线的性质与判定,熟练掌握垂直的定义及平行线的性质与判定是解题的关键.6、∠AOD=110°,∠AOB=20°【分析】根据OBOD,先可求出∠COD,再根据角平分线的性质求出∠AOD,利用角度的关系即可求出∠AOB【详解】解:∵OBOD∴∠BOD=90°∵∠BOC=35°,∴∠COD=90°-∠BOC=55°OC平分∠AOD∴∠AOD=2∠COD=110°∴∠AOB=∠AOD-∠BOD=110°-90°=20°.【点睛】此题主要考查角度的求解,解题的关键是熟知角平分线的性质、垂直的定义.7、作图见解析【分析】根据垂线段最短作图即可;【详解】解:如图,过点MMN,垂足为N,欲使通道最短,应沿线路MN施工.【点睛】本题主要考查了垂线段最短的应用,尺规作图,准确分析作图是解题的关键.8、(1)见解析;(2)①;垂线段最短;②相等【分析】(1)根据题意作图即可;(2)根据垂线段最短以及圆规进行检验即可.【详解】(1)如图所示,即为所求;(2)①根据垂线段最短可知,在线段CACECD中,线段CE最短;②用圆规检验DF=AC【点睛】本题主要考查了画平行线,画垂线,画线段,垂线段最短等等,熟知相关知识是解题的关键.9、180°;两直线平行,同旁内角互补;60°;等式的性质;30°;角平分线的定义;;两直线平行,内错角相等【分析】ABCD平行,利用两直线平行同旁内角互补求出∠BCD度数,由CA为角平分线,利用角平分线定义求出∠2的度数,再利用两直线平行内错角相等即可确定出∠1的度数.【详解】证明:∵ABCD,(已知)∴∠B+∠BCD=180°,(两直线平行同旁内角互补)∵∠B=120°(已知),∴∠BCD=60°.CA平分∠BCD(已知),∴∠2=30°,(角平分线定义).ABCD(已知),∴∠1=∠2=30°.(两直线平行内错角相等).故答案为:180°;两直线平行,同旁内角互补;60°;等式的性质;30°;角平分线定义;∠2;两直线平行,内错角相等.【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.10、对顶角相等;∠ABC;同旁内角互补,两直线平行;180;等量代换;内错角相等,两直线平行.【分析】先求出∠ABC=60°,即可证明∠ABC+∠2=180°得到AB∥CD,然后求出∠BCD=∠D 即可证明BC∥DE【详解】解∵∠1=60°(已知)ABC=∠1 (对顶角相等),∴∠ABC=60°(等量代换),又∵∠2=120°(已知),∴∠ABC+∠2=180°(等式的性质),AB∥CD (同旁内角互补,两直线平行),又∵∠2+∠BCD=180°,∴∠BCD=60°(等式的性质),∵∠D=60°(已知),∴∠BCD=∠D (等量代换),BC∥DE (内错角相等,两直线平行),故答案为:对顶角相等;∠ABC;同旁内角互补,两直线平行;180;等量代换;内错角相等,两直线平行.【点睛】本题主要考查了平行线的判定,对顶角相等,解题的关键在于能够熟练掌握平行线的判定条件. 

    相关试卷

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后测评:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后测评,共31页。试卷主要包含了下列说法,在下列各题中,属于尺规作图的是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试达标测试:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试达标测试,共32页。试卷主要包含了下列说法,如图,直线AB,如图,直线b等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试练习题:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试练习题,共30页。试卷主要包含了直线,下列说法中正确的有个,如图,∠1与∠2是同位角的是,下列命题正确的是等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map