开学活动
搜索
    上传资料 赚现金

    2022年强化训练沪教版七年级数学第二学期第十四章三角形专题训练试题(含解析)

    2022年强化训练沪教版七年级数学第二学期第十四章三角形专题训练试题(含解析)第1页
    2022年强化训练沪教版七年级数学第二学期第十四章三角形专题训练试题(含解析)第2页
    2022年强化训练沪教版七年级数学第二学期第十四章三角形专题训练试题(含解析)第3页
    还剩34页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中沪教版 (五四制)第十四章 三角形综合与测试同步训练题

    展开

    这是一份初中沪教版 (五四制)第十四章 三角形综合与测试同步训练题,共37页。
    沪教版七年级数学第二学期第十四章三角形专题训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知等腰三角形有一个角为50°,则这个等腰三角形的底角度数是( ).
    A.65° B.65°或80° C.50°或80° D.50°或65°
    2、如图,BD是的角平分线,,交AB于点E.若,,则的度数是( )

    A.10° B.20° C.30° D.50°
    3、如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形.他的依据是( )

    A. B. C. D.
    4、若等腰三角形的一个外角是70°,则它的底角的度数是( )
    A.110° B.70° C.35° D.55°
    5、在△ABC中,∠A=50°,∠B、∠C的平分线交于O点,则∠BOC等于( )
    A.65° B.80° C.115° D.50°
    6、△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若BC=5,则五边形DECHF的周长为(  )

    A.8 B.10 C.11 D.12
    7、如图,已知为的外角,,,那么的度数是( )

    A.30° B.40° C.50° D.60°
    8、等腰三角形的一个顶角是80°,则它的底角是( ).
    A.40° B.50° C.60° D.70°
    9、如图,在ABC中,AB=AC,D是BC的中点,∠B=35°,则∠BAD=( )

    A.110° B.70° C.55° D.35°
    10、如图,ABC≌DEF,点B、E、C、F在同一直线上,若BC=7,EC=4,则CF的长是( )

    A.2 B.3 C.4 D.7
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,点F,A,D,C在同一条直线上,,,,则AC等于_____.

    2、如图,在中,BD和CD分别是和的平分线,EF过点D,且,若,,则EF的长为______.

    3、如图,上午9时,一艘船从小岛A出发,以12海里的速度向正北方向航行,10时40分到达小岛B处,若从灯塔C处分别测得小岛A、B在南偏东34°、68°方向,则小岛B处到灯塔C的距离是______海里.

    4、如图所示,将一个顶角∠B=30°的等腰三角形ABC绕点A顺时针旋转α(0°<α<180°),得到等腰三角形AB'C',使得点B',A,C在同一条直线上,则旋转角α=_____度.

    5、在平面直角坐标系中,,,,,则点的坐标为__________.
    三、解答题(10小题,每小题5分,共计50分)
    1、如图,在△ABC中,∠BAC=90°,AB=AC,射线AE交BC于点P,∠BAE=15°;过点C作CD⊥AE于点D,连接BE,过点E作EF∥BC交DC的延长线于点F.
    (1)求∠F的度数;
    (2)若∠ABE=75°,求证:BE∥CF.

    2、如图,在中,AD平分,于点E.求证:.

    3、如图,在中,是的平分线,点在边上,且.
    (Ⅰ)求证:;
    (Ⅱ)若,,求的大小.

    4、如图,AD是的高,CE是的角平分线.若,,求的度数.

    5、如图,在等边中,D为BC边上一点,连接AD,将沿AD翻折得到,连接BE并延长交AD的延长线于点F,连接CF.

    (1)若,求的度数;
    (2)若,求的大小;
    (3)猜想CF,BF,AF之间的数量关系,并证明.
    6、如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.
    (1)求证DOB≌AOC;
    (2)求∠CEB的大小;
    (3)如图2,OAB固定不动,保持△OCD的形状和大小不变,将OCD绕点O旋转(OAB和OCD不能重叠),求∠CEB的大小.

    7、如图,在四边形ABCD中,点E在BC上,连接DE、AC相交于点F,∠BAE=∠CAD,AB=AE,AD=AC.

    (1)求证:∠DEC=∠BAE;
    (2)如图2,当∠BAE=∠CAD=30°,AD⊥AB时,延长DE、AB交于点G,请直接写出图中除△ABE、△ADC以外的等腰三角形.
    8、阅读以下材料,并按要求完成相应的任务:
    从正方形的一个顶点引出夹角为的两条射线,并连接它们与该顶点的两对边的交点构成的基本平面几何模型称为半角模型.半角模型可证出多个几何结论,例如:
    如下图1,在正方形中,以为顶点的,、与、边分别交于、两点.易证得.
    大致证明思路:如图2,将绕点顺时针旋转,得到,由可得、、三点共线,,进而可证明,故.


    任务:
    如图3,在四边形中,,,,以为顶点的,、与、边分别交于、两点.请参照阅读材料中的解题方法,你认为结论是否依然成立,若成立,请写出证明过程;若不成立,请说明理由.

    9、如图,AD为△ABC的角平分线.

    (1)如图1,若BE⊥AD于点E,交AC于点F,AB=4,AC=7.则CF=   ;
    (2)如图2,CG⊥AD于点G,连接BG,若△ABG的面积是6,求△ABC的面积;
    (3)如图3,若∠B=2∠C,AB=m,AC=n,则CD的长为    .(用含m,n的式子表示)
    10、已知AMCN,点B在直线AM、CN之间,AB⊥BC于点B.
    (1)如图1,请直接写出∠A和∠C之间的数量关系: .
    (2)如图2,∠A和∠C满足怎样的数量关系?请说明理由.
    (3)如图3,AE平分∠MAB,CH平分∠NCB,AE与CH交于点G,则∠AGH的度数为 .


    -参考答案-
    一、单选题
    1、D
    【分析】
    可以是底角,也可以是顶角,分情况讨论即可.
    【详解】
    当角为底角时,底角就是,
    当角为等腰三角形的顶角时,底角为,
    因此这个等腰三角形的底角为或.
    故选:D.
    【点睛】
    本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.
    2、B
    【分析】
    由外角的性质可得∠ABD=20°,由角平分线的性质可得∠DBC=20°,由平行线的性质即可求解.
    【详解】
    解:(1)∵∠A=30°,∠BDC=50°,∠BDC=∠A+∠ABD,
    ∴∠ABD=∠BDC−∠A=50°−30°=20°,
    ∵BD是△ABC的角平分线,
    ∴∠DBC=∠ABD=20°,
    ∵DE∥BC,
    ∴∠EDB=∠DBC=20°,
    故选:B.
    【点睛】
    本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键.
    3、C
    【分析】
    根据题意,可知仍可辨认的有1条边和2个角,且边为两角的夹边,即可根据来画一个完全一样的三角形
    【详解】
    根据题意可得,已知一边和两个角仍保留,且边为两角的夹边,
    根据两个三角形对应的两角及其夹边相等,两个三角形全等,即
    故选C
    【点睛】
    本题考查了三角形全等的性质与判定,掌握三角形的判定方法是解题的关键.
    4、C
    【分析】
    先求出与这个外角相邻的内角的度数为,再根据三角形的内角和定理即可得.
    【详解】
    解:等腰三角形的一个外角是,
    与这个外角相邻的内角的度数为,
    这个等腰三角形的顶角的度数为,底角的度数为,
    故选:C.
    【点睛】
    本题考查了等腰三角形、三角形的内角和定理等知识点,判断出等腰三角形的顶角的度数为是解题关键.
    5、C
    【分析】
    根据题意画出图形,求出∠ABC+∠ACB =130°,根据角平分线的定义得到∠CBD=∠ABC,∠ECB=∠ACB,再根据三角形内角和定理和角的代换即可求解.
    【详解】
    解:如图,∵∠A=50°,
    ∴∠ABC+∠ACB=180°-∠A=130°,
    ∵BD、CE分别是∠ABC、∠ACB的平分线,
    ∴∠CBD=∠ABC,∠ECB=∠ACB,
    ∴∠BOC=180°-∠CBD-∠ECB=180°-(∠CBD+∠ECB)=180°- (∠ABC+∠ACB)=180°- ×130°=115°.

    故选:C
    【点睛】
    本题考查了三角形内角和定理,角平分线的定义,熟知三角形内角和定理,并能根据角平分线的定义进行角的代换是解题关键.
    6、B
    【分析】
    证明△AFH≌△CHG(AAS),得出AF=CH.由题意可知BE=FH,则得出五边形DECHF的周长=AB+BC,则可得出答案.
    【详解】
    解:∵△GFH为等边三角形,
    ∴FH=GH,∠FHG=60°,
    ∴∠AHF+∠GHC=120°,
    ∵△ABC为等边三角形,
    ∴AB=BC=AC=5,∠ACB=∠A=60°,
    ∵∠AHF=180°-∠FHG-∠GHC =120°-∠GHC,
    ∠HGC=180°-∠C-∠GHC =120°-∠GHC,
    ∴∠AHF=∠HGC,
    在△AFH和△CHG中

    ∴△AFH≌△CHG(AAS),
    ∴AF=CH.
    ∵△BDE和△FGH是两个全等的等边三角形,
    ∴BE=FH,
    ∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,
    =(BD+DF+AF)+(CE+BE),
    =AB+BC=10.
    故选:B.
    【点睛】
    本题考查了全等三角形的判定与性质,等边三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.
    7、B
    【分析】
    根据三角形的外角性质解答即可.
    【详解】
    解:∵∠ACD=60°,∠B=20°,
    ∴∠A=∠ACD−∠B=60°−20°=40°,
    故选:B.
    【点睛】
    此题考查三角形的外角性质,关键是根据三角形外角性质解答.
    8、B
    【分析】
    依据三角形的内角和是180°以及等腰三角形的性质即可解答.
    【详解】
    解:(180°-80°)÷2
    =100°÷2
    =50°;
    答:底角为50°.
    故选:B.
    【点睛】
    本题主要考查三角形的内角和定理及等腰三角形的两个底角相等的特点.
    9、C
    【分析】
    根据等腰三角形三线合一的性质可得AD⊥BC,然后利用直角三角形两锐角互余的性质解答.
    【详解】
    解:∵AB=AC,D是BC的中点,
    ∴AD⊥BC,
    ∵∠B=35°,
    ∴∠BAD=90°−35°=55°.
    故选:C.
    【点睛】
    本题主要考查了等腰三角形三线合一的性质,直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.
    10、B
    【分析】
    根据全等三角形的性质可得,根据即可求得答案.
    【详解】
    解:ABC≌DEF,

    点B、E、C、F在同一直线上,BC=7,EC=4,

    故选B
    【点睛】
    本题考查了全等三角形的性质,掌握全等三角形的性质是解题的关键.
    二、填空题
    1、6.5
    【分析】
    由全等三角形的性质可得到AC=DF,从而推出AF=CD,再由,,求出,则.
    【详解】
    解:∵△ABC≌△DEF,
    ∴AC=DF,即AF+AD=CD+AD,
    ∴AF=CD,
    ∵,,
    ∴,
    ∴,
    ∴,
    故答案为:6.5.

    【点睛】
    本题主要考查了全等三角形的性质,线段的和差,解题的关键在于能够熟练掌握全等三角形的性质.
    2、7
    【分析】
    根据角平分线的定义和平行线的性质证明∠EBD=∠EDB,∠FDC=∠FCD,得到BE=DE,CF=DF,即可求解.
    【详解】
    解:∵EF∥BC,
    ∴∠EDB=∠DBC,∠FDC=∠DCB,
    又∵BD和CD分别是∠ABC和∠ACB的平分线,
    ∴∠EBD=∠DBC,∠FCD=∠DCB,
    ∴∠EBD=∠EDB,∠FDC=∠FCD,
    ∴BE=DE,CF=DF,
    又∵BE=3,CF=4,
    ∴EF=DE+DF=BE+CF=7.
    故答案为:7.
    【点睛】
    本题主要考查了平行线的性质,角平分的定义,等腰三角形的性质与判定,熟知相关知识是解题的关键.
    3、20
    【分析】
    根据题干所给的角的度数,易证是等腰三角形,而AB的长易求,即可根据等腰三角形的性质,得出BC的值.
    【详解】
    解:据题意得,.
    ∵,即,
    ∴,
    ∴.
    由题意可知这艘船行驶的时间为(小时).
    ∴(海里),
    ∴(海里).
    故答案为:20.
    【点睛】
    本题考查了三角形外角的性质,等腰三角形的判定和性质,方向角的问题,解题的关键是由已知得到三角形是等腰三角形,要学会把实际问题转化为数学问题,再用数学知识解决实际问题.
    4、105
    【分析】
    利用等腰三角形的性质求出∠BAC,可得结论.
    【详解】
    解:∵BC=BA,∠B=30°,
    ∴∠C=∠BAC=(180°﹣30°)=75°,
    ∴旋转角α=180°﹣∠BAC=105°,
    故答案为:105.
    【点睛】
    本题考查了等腰三角形性质以及旋转的角度问题,解题的关键是理解旋转角就是对应线段的夹角.
    5、
    【分析】
    按照在x轴的上下方,分成两类情况讨论,如解析中的图像所示,分别利用边和角证明和成立,然后根据对应边相等,即可求出两种情况对应的点B的坐标.
    【详解】
    解:如下图所示:

    由,可知:,.
    当B点在x轴下方时,过点B1向x轴作垂线,垂足为E.




    在与中:




    点坐标为
    当B点在x轴上方时,过点B2向x轴作垂线,垂足为D.
    由题意可知:


    在与中




    点坐标为
    故答案为:或.
    【点睛】
    本题主要是考查了全等三角形的判定和性质以及坐标点的求解,熟练利用全等三角形证明边相等,进而利用边长求解点的坐标,这是解决该题的关键.
    三、解答题
    1、(1);(2)证明见详解.

    【分析】
    (1)根据三角形内角和及等腰三角形的性质可得,,由各角之间的关系及三角形内角和定理可得,,最后由平行线的性质即可得出;
    (2)由题意及各角之间的关系可得,得出,利用平行线的判定定理即可证明.
    【详解】
    解:(1)∵,,,
    ∴,,
    ∵,
    ∴,,
    ∴,
    ∴,
    ∵,
    ∴,,
    ∴;
    (2)∵,,
    ∴,
    由(1)可得,
    ∴,
    ∴(内错角相等,两直线平行).
    【点睛】
    题目主要考查平行线的判定与性质,三角形内角和定理等,熟练掌握平行线的判定与性质是解题关键.
    2、证明见解析.
    【分析】
    延长CE交AB于F,求出∠AEC=∠AEF,∠FAE=∠CAE,根据ASA证△FAE≌△CAE,推出∠ACE=∠AFC,根据三角形外角性质得出∠AFC=∠B+∠ECD,代入即可.
    【详解】
    证明:延长CE交AB于F,

    ∵CE⊥AD,
    ∴∠AEC=∠AEF,
    ∵AD平分∠BAC,
    ∴∠FAE=∠CAE,
    在△FAE和△CAE中,
    ∵ ,
    ∴△FAE≌△CAE(ASA),
    ∴∠ACE=∠AFC,
    ∵∠AFC=∠B+∠ECD,
    ∴∠ACE=∠B+∠ECD.
    【点睛】
    本题考查了全等三角形的性质和判定,三角形的外角性质等知识点,关键是作辅助线后求出∠AFC=∠ACE.
    3、(Ⅰ)见解析;(Ⅱ)
    【分析】
    (Ⅰ)由CD是的平分线得出,由得出
    从而得出,由平行线的判断即可得证;
    (Ⅱ)由三角形内角和求出,由角平分线得出,由三角形内角和求出即可得出答案.
    【详解】
    (Ⅰ)∵CD是的平分线,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴;
    (Ⅱ)∵,,
    ∴,
    ∴,
    ∴.
    【点睛】
    本题考查平行线的判定以及三角形内角和定理,掌握相关知识是解题的关键
    4、
    【分析】
    AD是的高,有;由知;CE是的角平分线可得;,;在中,.
    【详解】
    解:∵AD是的高



    ∵CE是的角平分线



    ∴在中,.
    【点睛】
    本题考查了角平分线.解题的关键在于正确表示各角度之间的数量关系.
    5、(1)20°;(2);(3)AF= CF+BF,理由见解析
    【分析】
    (1)由△ABC是等边三角形,得到AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,则∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,,∠CBF=∠ABE-∠ABC=20°;
    (2)同(1)求解即可;
    (3)如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,先证明△AEF≌△ACF得到∠AFE=∠AFC,然后证明∠AFE=∠AFC=60°,得到∠BFC=120°,即可证明F、C、G三点共线,得到△AFG是等边三角形,则AF=GF=CF+CG=CF+BF.
    【详解】
    解:(1)∵△ABC是等边三角形,
    ∴AB=AC,∠BAC=∠ABC=60°,
    由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,
    ∴∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,
    ∴,
    ∴∠CBF=∠ABE-∠ABC=20°;
    (2)∵△ABC是等边三角形,
    ∴AB=AC,∠BAC=∠ABC=60°,
    由折叠的性质可知,,AC=AE,
    ∴ ,AB=AE,
    ∴,
    ∴;
    (3)AF= CF+BF,理由如下:
    如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,
    ∴AF=AG,∠FAG=60°,∠ACG=∠ABF,BF=CG
    在△AEF和△ACF中,

    ∴△AEF≌△ACF(SAS),
    ∴∠AFE=∠AFC,
    ∵∠CBF+∠BCF+∠BFD+∠CFD=180°,∠CAF+∠CFA+∠ACD+∠CFD=180°,
    ∴∠BFD=∠ACD=60°,
    ∴∠AFE=∠AFC=60°,
    ∴∠BFC=120°,
    ∴∠BAC+∠BFC=180°,
    ∴∠ABF+∠ACF=180°,
    ∴∠ACG+∠ACF=180°,
    ∴F、C、G三点共线,
    ∴△AFG是等边三角形,
    ∴AF=GF=CF+CG=CF+BF.

    【点睛】
    本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键.
    6、(1)见详解;(2)120°;(2)120°.
    【分析】
    (1)如图1,根据等边三角形的性质得到OD=OC=OA=OB,∠COD=∠AOB=60°,则利用根据“SAS”判断△AOC≌△BOD;
    (2)利用△AOC≌△BOD得到∠CAO=∠DBO,然后根据三角形内角和可得到∠AEB=∠AOB=60°,即可求出答案;
    (3)如图2,与(1)的方法一样可证明△AOC≌△BOD;则∠CAO=∠DBO,然后根据三角形内角和可求出∠AEB=∠AOB=60°,即可得到答案.
    【详解】
    (1)证明:如图1,

    ∵△ODC和△OAB都是等边三角形,
    ∴OD=OC=OA=OB,∠COD=∠AOB=60°,
    ∴∠BOD=∠AOC=120°,
    在△AOC和△BOD中

    ∴△AOC≌△BOD;
    (2)解:∵△AOC≌△BOD,
    ∴∠CAO=∠DBO,
    ∵∠1=∠2,
    ∴∠AEB=∠AOB=60°,
    ∴;
    (3)解:如图2,

    ∵△ODC和△OAB都是等边三角形,
    ∴OD=OC=OA=OB,∠COD=∠AOB=60°,
    ∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,
    在△AOC和△BOD中

    ∴△AOC≌△BOD;
    ∴∠CAO=∠DBO,
    ∵∠1=∠2,
    ∴∠AEB=∠AOB=60°,
    ∴;
    即∠CEB的大小不变.
    【点睛】
    本题考查了几何变换综合题:熟练掌握旋转的性质、等边三角形的性质和全等三角形的判定与性质;利用类比的方法解决(3)小题.
    7、(1)见解析;(2)△AEF、△ADG、△DCF、△ECD
    【分析】
    (1)根据已知条件得到∠BAE=∠CAD,根据全等三角形的性质得到∠AED=∠ABC,根据等腰三角形的性质得到∠ABC=∠AEB,于是得到结论;
    (2)根据等腰三角形的判定定理即可得到结论.
    【详解】
    证明:(1)如图1,∵∠BAE=∠CAD,
    ∴∠BAE+∠CAE=∠CAD+∠CAE,
    即∠BAC=∠EAD,
    在△AED与△ABC中,

    ∴△AED≌△ABC,
    ∴∠AED=∠ABC,
    ∵∠BAE+∠ABC+∠AEB=180°,
    ∠CED+∠AED+∠AEB=180°,
    ∵AB=AE,
    ∴∠ABC=∠AEB,
    ∴∠BAE+2∠AEB=180°,
    ∠CED+2∠AEB=180°,
    ∴∠DEC=∠BAE;
    (2)解:如图2,
    ①∵∠BAE=∠CAD=30°,
    ∴∠ABC=∠AEB=∠ACD=∠ADC=75°,
    由(1)得:∠AED=∠ABC=75°,
    ∠DEC=∠BAE=30°,
    ∵AD⊥AB,
    ∴∠BAD=90°,
    ∴∠CAE=30°,
    ∴∠AFE=180°−30°−75°=75°,
    ∴∠AEF=∠AFE,
    ∴△AEF是等腰三角形,
    ②∵∠BEG=∠DEC=30°,∠ABC=75°,
    ∴∠G=45°,
    在Rt△AGD中,∠ADG=45°,
    ∴△ADG是等腰直角三角形,
    ③∠CDF=75°−45°=30°,
    ∴∠DCF=∠DFC=75°,
    ∴△DCF是等腰直角三角形;
    ④∵∠CED=∠EDC=30°,
    ∴△ECD是等腰三角形.
    【点睛】
    本题考查了全等三角形的判定与性质,等腰直角三角形的判定,等腰三角形的判定和性质,熟练掌握全等三角形的判定与性质是解题的关键.
    8、成立,证明见解析
    【分析】
    根据阅读材料将△ADF旋转120°再证全等即可求得EF= BE+DF .
    【详解】
    解:成立.
    证明:将绕点顺时针旋转,得到,
    ,,,,,

    ,、、三点共线,

    ,,,


    【点睛】
    本题考查旋转中的三角形全等,读懂材料并运用所学的全等知识是本题关键.
    9、
    (1)3
    (2)12
    (3)
    【分析】
    (1)利用ASA证明△AEF≌△ABE,得AE=AB=4,得出答案;
    (2)延长CG、AB交于点H,设S△BGC=S△HGB=a,用两种方法表示△ACH的面积即可;
    (3)在AC上取AN=AB,可得CD=DN=n-m,根据△ABD和△ACD的高相等,面积比等于底之比可求出CD的长.
    (1)
    ∵AD是△ABC的平分线,
    ∴∠BAD=∠CAD,
    ∵BE⊥AD,
    ∴∠BEA=∠FEA,
    在△AEF和△AEB中,

    ∴△AEF≌△AEB(ASA),
    ∴AF=AB=4,
    ∵AC=7
    ∴CF=AC-AF=7-4=3,
    故答案为:3;
    (2)
    延长CG、AB交于点H,如图,

    由(1)知AC=AH,点G为CH的中点,
    设S△BGC=S△HGB=a,
    根据△ACH的面积可得:
    S△ABC+2a=2(6+a),
    ∴S△ABC=12;
    (3)
    在AC上取AN=AB,如图,

    ∵AD是△ABC的平分线,
    ∴∠NAD=∠BAD,
    在△ADN与△ADB中,

    ∴△ADN≌△ADB(SAS),
    ∴∠AND=∠B,DN=BD,
    ∵∠B=2∠C,
    ∴∠AND=2∠C,
    ∴∠C=∠CDN,
    ∴CN=DN=AC-AB=n-m,
    ∴BD=DN=n-m,
    根据△ABD和△ACD的高相等,面积比等于底之比可得:

    ∴,
    ∴,
    故答案为:.
    【点睛】
    本题主要考查了全等三角形的判定与性质,角平分线的定义,三角形的面积等知识,利用角的轴对称性构造全等三角形是解题的关键.
    10、(1)∠A+∠C=90°;(2)∠C﹣∠A=90°,见解析;(3)45°
    【分析】
    (1)过点B作BE∥AM,利用平行线的性质即可求得结论;
    (2)过点B作BE∥AM,利用平行线的性质即可求得结论;
    (3)利用(2)的结论和三角形的外角等于和它不相邻的两个内角的和即可求得结论.
    【详解】
    (1)过点B作BE∥AM,如图,

    ∵BE∥AM,
    ∴∠A=∠ABE,
    ∵BE∥AM,AM∥CN,
    ∴BE∥CN,
    ∴∠C=∠CBE,
    ∵AB⊥BC,
    ∴∠ABC=90°,
    ∴∠A+∠C=∠ABE+∠CBE=∠ABC=90°.
    故答案为:∠A+∠C=90°;
    (2)∠A和∠C满足:∠C﹣∠A=90°.理由:
    过点B作BE∥AM,如图,

    ∵BE∥AM,
    ∴∠A=∠ABE,
    ∵BE∥AM,AM∥CN,
    ∴BE∥CN,
    ∴∠C+∠CBE=180°,
    ∴∠CBE=180°﹣∠C,
    ∵AB⊥BC,
    ∴∠ABC=90°,
    ∴∠ABE+∠CBE=90°,
    ∴∠A+180°﹣∠C=90°,
    ∴∠C﹣∠A=90°;
    (3)设CH与AB交于点F,如图,

    ∵AE平分∠MAB,
    ∴∠GAF=∠MAB,
    ∵CH平分∠NCB,
    ∴∠BCF=∠BCN,
    ∵∠B=90°,
    ∴∠BFC=90°﹣∠BCF,
    ∵∠AFG=∠BFC,
    ∴∠AFG=90°﹣∠BCF.
    ∵∠AGH=∠GAF+∠AFG,
    ∴∠AGH=∠MAB+90°﹣∠BCN=90°﹣(∠BCN﹣∠MAB).
    由(2)知:∠BCN﹣∠MAB=90°,
    ∴∠AGH=90°﹣45°=45°.
    故答案为:45°.
    【点睛】
    本题考查平行线的性质以及三角形外角的性质,由题作出辅助线是解题的关键.

    相关试卷

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步测试题:

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步测试题,共29页。试卷主要包含了定理,如图,点D等内容,欢迎下载使用。

    初中第十四章 三角形综合与测试练习题:

    这是一份初中第十四章 三角形综合与测试练习题,共36页。试卷主要包含了下列叙述正确的是,定理,下列说法错误的是等内容,欢迎下载使用。

    数学七年级下册第十四章 三角形综合与测试同步练习题:

    这是一份数学七年级下册第十四章 三角形综合与测试同步练习题,共31页。试卷主要包含了如图,点A,下列命题是真命题的是,如图,点D,若一个三角形的三个外角之比为3等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map